A function to replace NA
in the data frame by Amelia::amelia()
.
Arguments
- missdf
a data frame with missing values to be imputed containing features in columns and samples in rows.
- verbose
boolean, if
TRUE
, prints the typical prompts ofAmelia::amelia()
.- ...
other parameters of
Amelia::amelia()
besidesx
andm
.
Value
A data.frame
with imputed values by Amelia::amelia()
.
Details
amelia()
allows users to customize the number of imputed datasets to
create. As one of the aims of the imputomics
is to standardize the
input and the output, the m
is being set to 1.
References
Honaker J, King G, Blackwell M (2011). “Amelia II: A Program for Missing Data.” Journal of Statistical Software, 45, 1--47. ISSN 1548-7660, doi:10.18637/jss.v045.i07 .
Examples
data(sim_miss)
impute_amelia(sim_miss)
#> Warning: You have a small number of observations, relative to the number, of variables in the imputation model. Consider removing some variables, or reducing the order of time polynomials to reduce the number of parameters.
#> X1 X2 X3 X4 X5 X6
#> 1 0.155050833 0.88115677 0.1302830 0.1194841210 0.600405471 0.79561010
#> 2 0.968378809 0.60748407 0.6337790 0.6181194666 0.008132938 0.75207300
#> 3 0.468263086 0.57452956 0.2476089 0.4258912963 0.370125689 0.73651251
#> 4 0.776819652 0.80313329 0.5513393 0.1459775318 0.724248714 0.84777606
#> 5 0.407885741 0.79911692 0.2347611 0.1897135850 0.418270750 0.70873497
#> 6 0.538797149 0.80186265 0.2586147 0.5754945197 0.238248518 1.04092439
#> 7 0.830082966 0.75207300 0.9528881 0.0001881735 0.887881226 0.48833525
#> 8 0.187103555 0.57546133 0.8568746 0.3283282877 0.577775384 0.34722847
#> 9 0.779969688 0.94421829 0.7111265 0.0782780354 0.739950257 0.20304801
#> 10 0.193943927 0.21898736 0.5545242 0.6041721753 0.160679622 0.73995026
#> 11 0.434231178 0.47799791 0.8769438 0.3267990556 0.529571799 0.89369752
#> 12 0.002274518 0.04466879 0.8018626 0.7904525734 0.574529562 0.57452956
#> 13 0.834692139 0.16848571 0.5467373 0.8300829662 0.960086967 0.08444870
#> 14 -1.203669142 0.36828087 0.2327532 0.8100510929 0.398616886 0.14825833
#> 15 0.956967818 0.56331137 0.6022678 0.2027530000 0.408468068 0.37028128
#> 16 0.948497073 0.55100519 0.7125391 0.5060450307 0.613321482 0.86117762
#> 17 0.600729976 0.73432757 0.6489036 0.5206679751 0.706590850 0.83668180
#> 18 0.261807405 0.70365677 0.1875624 0.0842680801 0.799116918 0.74054705
#> 19 0.643034251 0.73682406 0.2383929 0.2687653562 0.161331222 0.98576580
#> 20 0.526233507 0.04183916 1.4184151 0.8147157354 0.885932416 0.03208182