Multiple Imputation using Predictive Mean Matching.
Arguments
- missdf
a data frame with missing values to be imputed containing features in columns and samples in rows.
- verbose
boolean, if
TRUE
, prints the typical prompts ofHmisc::aregImpute()
.- ...
other parameters of
Hmisc::aregImpute()
besidesformula
,formula
,data
andtype
.
Value
A data.frame
with imputed values by Hmisc::aregImpute()
.
Details
A function to replace NA
in the data frame by Hmisc::aregImpute()
.
aregImpute()
allows users to customize the number of imputed datasets
to create. As one of the aims of the imputomics
is to standardize the
input and the output, the n.impute
is being set to 1.
References
Jr FEH, functions s, maintains latex functions) CD( (2023). “Hmisc: Harrell Miscellaneous.”
Examples
data(sim_miss)
impute_areg(sim_miss)
#> X1 X2 X3 X4 X5 X6
#> 1 0.155050833 0.88115677 0.2327532 0.1194841210 0.600405471 0.75207300
#> 2 0.968378809 0.60748407 0.6337790 0.6181194666 0.008132938 0.75207300
#> 3 0.468263086 0.57452956 0.2476089 0.1194841210 0.370125689 0.75207300
#> 4 0.776819652 0.80313329 0.5513393 0.1459775318 0.724248714 0.84777606
#> 5 0.407885741 0.79911692 0.2347611 0.1897135850 0.418270750 0.70873497
#> 6 0.538797149 0.80186265 0.2586147 0.5754945197 0.238248518 0.75207300
#> 7 0.830082966 0.75207300 0.9528881 0.0001881735 0.887881226 0.48833525
#> 8 0.187103555 0.57546133 0.8568746 0.3283282877 0.577775384 0.34722847
#> 9 0.779969688 0.94421829 0.6337790 0.0782780354 0.739950257 0.20304801
#> 10 0.193943927 0.21898736 0.5545242 0.6041721753 0.160679622 0.73995026
#> 11 0.434231178 0.47799791 0.8769438 0.3267990556 0.529571799 0.89369752
#> 12 0.002274518 0.04466879 0.8018626 0.7904525734 0.574529562 0.57452956
#> 13 0.834692139 0.16848571 0.5467373 0.8300829662 0.960086967 0.08444870
#> 14 0.155050833 0.36828087 0.2327532 0.8100510929 0.398616886 0.14825833
#> 15 0.956967818 0.56331137 0.6022678 0.2027530000 0.408468068 0.37028128
#> 16 0.948497073 0.60748407 0.7125391 0.5060450307 0.613321482 0.86117762
#> 17 0.600729976 0.73432757 0.6489036 0.5206679751 0.706590850 0.83668180
#> 18 0.261807405 0.70365677 0.1875624 0.0842680801 0.799116918 0.74054705
#> 19 0.643034251 0.73682406 0.2383929 0.2687653562 0.161331222 0.98576580
#> 20 0.526233507 0.36828087 0.5467373 0.8147157354 0.885932416 0.03208182