Skip to contents

Gibbs Sampler Based Left-Censored Missing Value Imputation.

Usage

impute_gsimp(
  missdf,
  iters_each = 100,
  iters_all = 20,
  initial = "qrilc",
  lo = -Inf,
  hi = "min",
  imp_model = "glmnet_pred",
  gibbs = data.frame(row = integer(), col = integer())
)

Arguments

missdf

a data frame with missing values to be imputed containing features in columns and samples in rows.

iters_each

number (100); vector of numbers, e.g. rep(100, 20)

iters_all

= 20

initial

character ('qrilc'/'lysm') initialized data matrix

lo

number; vector; functions like min/max/median/mean

hi

number; vector; functions like min/max/median/mean

imp_model

= glmnet_pred,

gibbs

= data.frame(row = integer(), col=integer())

Value

A data.frame with imputed values by GSimp method.

Details

A function to replace NA in the data frame by GSimp method.

This function and its documentation was copied from https://github.com/WandeRum/GSimp and contains the GSimp algorithm and related functions developed by Rum Wei (10.1371/journal.pcbi.1005973).

References

Wei R, Wang J, Jia E, Chen T, Ni Y, Jia W (2018). “GSimp: A Gibbs Sampler Based Left-Censored Missing Value Imputation Approach for Metabolomics Studies.” PLOS Computational Biology, 14(1), e1005973. ISSN 1553-7358, doi:10.1371/journal.pcbi.1005973 .

Examples

data(sim_miss)
impute_gsimp(sim_miss)
#>              X1          X2         X3            X4          X5          X6
#> 1   0.155050833  0.88115677  0.1747543  0.1194841210 0.600405471  0.01306738
#> 2   0.968378809  0.60748407  0.6337790  0.6181194666 0.008132938  0.75207300
#> 3   0.468263086  0.57452956  0.2476089 -0.3708286661 0.370125689 -0.16734818
#> 4   0.776819652  0.80313329  0.5513393  0.1459775318 0.724248714  0.84777606
#> 5   0.407885741  0.79911692  0.2347611  0.1897135850 0.418270750  0.70873497
#> 6   0.538797149  0.80186265  0.2586147  0.5754945197 0.238248518 -0.16104460
#> 7   0.830082966  0.75207300  0.9528881  0.0001881735 0.887881226  0.48833525
#> 8   0.187103555  0.57546133  0.8568746  0.3283282877 0.577775384  0.34722847
#> 9   0.779969688  0.94421829  0.1286374  0.0782780354 0.739950257  0.20304801
#> 10  0.193943927  0.21898736  0.5545242  0.6041721753 0.160679622  0.73995026
#> 11  0.434231178  0.47799791  0.8769438  0.3267990556 0.529571799  0.89369752
#> 12  0.002274518  0.04466879  0.8018626  0.7904525734 0.574529562  0.57452956
#> 13  0.834692139  0.16848571  0.5467373  0.8300829662 0.960086967  0.08444870
#> 14 -1.493134156  0.36828087  0.2327532  0.8100510929 0.398616886  0.14825833
#> 15  0.956967818  0.56331137  0.6022678  0.2027530000 0.408468068  0.37028128
#> 16  0.948497073 -0.19814971  0.7125391  0.5060450307 0.613321482  0.86117762
#> 17  0.600729976  0.73432757  0.6489036  0.5206679751 0.706590850  0.83668180
#> 18  0.261807405  0.70365677  0.1875624  0.0842680801 0.799116918  0.74054705
#> 19  0.643034251  0.73682406  0.2383929  0.2687653562 0.161331222  0.98576580
#> 20  0.526233507 -0.20306946 -0.1130160  0.8147157354 0.885932416  0.03208182