A function to replace NA in the data frame by zero.
Arguments
- missdf
a data frame with missing values to be imputed containing features in columns and samples in rows.
- verbose
boolean, if
TRUE, prints the typical prompts ofMetabImpute::Impute().- ...
other parameters of
MetabImpute::Impute()besidesmethodanddata.
Value
A data.frame with imputed values of zero by
MetabImpute::Impute().
No replicates allowed
Impute() allows users to improve the quality of the imputation by
providing the number of replications of the experiment. As one of the aims of
the imputomics is to standardize the
input and the output, our wrappers do not allow for this behavior.
References
Davis TJ, Firzli TR, Higgins Keppler EA, Richardson M, Bean HD (2022). “Addressing Missing Data in GC × GC Metabolomics: Identifying Missingness Type and Evaluating the Impact of Imputation Methods on Experimental Replication.” Analytical Chemistry, 94(31), 10912--10920. ISSN 0003-2700, doi:10.1021/acs.analchem.1c04093 .
Examples
data(sim_miss)
impute_metabimpute_zero(sim_miss)
#> X1 X2 X3 X4 X5 X6
#> 1 0.155050833 0.88115677 0.0000000 0.1194841210 0.600405471 0.00000000
#> 2 0.968378809 0.60748407 0.6337790 0.6181194666 0.008132938 0.75207300
#> 3 0.468263086 0.57452956 0.2476089 0.0000000000 0.370125689 0.00000000
#> 4 0.776819652 0.80313329 0.5513393 0.1459775318 0.724248714 0.84777606
#> 5 0.407885741 0.79911692 0.2347611 0.1897135850 0.418270750 0.70873497
#> 6 0.538797149 0.80186265 0.2586147 0.5754945197 0.238248518 0.00000000
#> 7 0.830082966 0.75207300 0.9528881 0.0001881735 0.887881226 0.48833525
#> 8 0.187103555 0.57546133 0.8568746 0.3283282877 0.577775384 0.34722847
#> 9 0.779969688 0.94421829 0.0000000 0.0782780354 0.739950257 0.20304801
#> 10 0.193943927 0.21898736 0.5545242 0.6041721753 0.160679622 0.73995026
#> 11 0.434231178 0.47799791 0.8769438 0.3267990556 0.529571799 0.89369752
#> 12 0.002274518 0.04466879 0.8018626 0.7904525734 0.574529562 0.57452956
#> 13 0.834692139 0.16848571 0.5467373 0.8300829662 0.960086967 0.08444870
#> 14 0.000000000 0.36828087 0.2327532 0.8100510929 0.398616886 0.14825833
#> 15 0.956967818 0.56331137 0.6022678 0.2027530000 0.408468068 0.37028128
#> 16 0.948497073 0.00000000 0.7125391 0.5060450307 0.613321482 0.86117762
#> 17 0.600729976 0.73432757 0.6489036 0.5206679751 0.706590850 0.83668180
#> 18 0.261807405 0.70365677 0.1875624 0.0842680801 0.799116918 0.74054705
#> 19 0.643034251 0.73682406 0.2383929 0.2687653562 0.161331222 0.98576580
#> 20 0.526233507 0.00000000 0.0000000 0.8147157354 0.885932416 0.03208182