Skip to contents

Quantile Regression Imputation Of Left-Censored Data.

Usage

impute_qrilc(missdf, ...)

Arguments

missdf

a data frame with missing values to be imputed containing features in columns and samples in rows.

...

other parameters of imputeLCMD::impute.QRILC() besides dataSet.mvs.

Value

A data.frame with imputed values by imputeLCMD::impute.QRILC().

Details

A function to replace NA in the data frame by imputeLCMD::impute.QRILC().

References

Lazar C, Burger T, Wieczorek S (2022). “imputeLCMD: A Collection of Methods for Left-Censored Missing Data Imputation.”

Examples

data(sim_miss)
impute_qrilc(sim_miss)
#>             X1          X2        X3            X4          X5          X6
#> 1  0.155050833 0.881156767 0.1241039  0.1194841210 0.600405471 -0.03514447
#> 2  0.968378809 0.607484067 0.6337790  0.6181194666 0.008132938  0.75207300
#> 3  0.468263086 0.574529562 0.2476089 -0.1339547728 0.370125689  0.07975963
#> 4  0.776819652 0.803133289 0.5513393  0.1459775318 0.724248714  0.84777606
#> 5  0.407885741 0.799116918 0.2347611  0.1897135850 0.418270750  0.70873497
#> 6  0.538797149 0.801862649 0.2586147  0.5754945197 0.238248518  0.11450220
#> 7  0.830082966 0.752073002 0.9528881  0.0001881735 0.887881226  0.48833525
#> 8  0.187103555 0.575461327 0.8568746  0.3283282877 0.577775384  0.34722847
#> 9  0.779969688 0.944218290 0.1323102  0.0782780354 0.739950257  0.20304801
#> 10 0.193943927 0.218987358 0.5545242  0.6041721753 0.160679622  0.73995026
#> 11 0.434231178 0.477997912 0.8769438  0.3267990556 0.529571799  0.89369752
#> 12 0.002274518 0.044668789 0.8018626  0.7904525734 0.574529562  0.57452956
#> 13 0.834692139 0.168485713 0.5467373  0.8300829662 0.960086967  0.08444870
#> 14 0.003061700 0.368280872 0.2327532  0.8100510929 0.398616886  0.14825833
#> 15 0.956967818 0.563311366 0.6022678  0.2027530000 0.408468068  0.37028128
#> 16 0.948497073 0.002809379 0.7125391  0.5060450307 0.613321482  0.86117762
#> 17 0.600729976 0.734327573 0.6489036  0.5206679751 0.706590850  0.83668180
#> 18 0.261807405 0.703656773 0.1875624  0.0842680801 0.799116918  0.74054705
#> 19 0.643034251 0.736824060 0.2383929  0.2687653562 0.161331222  0.98576580
#> 20 0.526233507 0.139636194 0.1388122  0.8147157354 0.885932416  0.03208182