Truncated K Nearest Neighbors.
Arguments
- missdf
a data frame with missing values to be imputed containing features in columns and samples in rows.
- k
the number of neighbors.
References
Shah JS, Rai SN, DeFilippis AP, Hill BG, Bhatnagar A, Brock GN (2017). “Distribution Based Nearest Neighbor Imputation for Truncated High Dimensional Data with Applications to Pre-Clinical and Clinical Metabolomics Studies.” BMC Bioinformatics, 18(1), 114. ISSN 1471-2105, doi:10.1186/s12859-017-1547-6 .
Examples
data(sim_miss)
impute_tknn(sim_miss)
#> X1 X2 X3 X4 X5 X6
#> 1 0.155050833 0.88115677 0.49390936 0.1194841210 0.600405471 0.83446711
#> 2 0.968378809 0.60748407 0.63377903 0.6181194666 0.008132938 0.75207300
#> 3 0.468263086 0.57452956 0.24760893 0.6243170166 0.370125689 0.45624325
#> 4 0.776819652 0.80313329 0.55133933 0.1459775318 0.724248714 0.84777606
#> 5 0.407885741 0.79911692 0.23476108 0.1897135850 0.418270750 0.70873497
#> 6 0.538797149 0.80186265 0.25861469 0.5754945197 0.238248518 0.69053829
#> 7 0.830082966 0.75207300 0.95288810 0.0001881735 0.887881226 0.48833525
#> 8 0.187103555 0.57546133 0.85687457 0.3283282877 0.577775384 0.34722847
#> 9 0.779969688 0.94421829 -0.05220976 0.0782780354 0.739950257 0.20304801
#> 10 0.193943927 0.21898736 0.55452418 0.6041721753 0.160679622 0.73995026
#> 11 0.434231178 0.47799791 0.87694381 0.3267990556 0.529571799 0.89369752
#> 12 0.002274518 0.04466879 0.80186265 0.7904525734 0.574529562 0.57452956
#> 13 0.834692139 0.16848571 0.54673734 0.8300829662 0.960086967 0.08444870
#> 14 0.356125155 0.36828087 0.23275320 0.8100510929 0.398616886 0.14825833
#> 15 0.956967818 0.56331137 0.60226778 0.2027530000 0.408468068 0.37028128
#> 16 0.948497073 0.75039971 0.71253911 0.5060450307 0.613321482 0.86117762
#> 17 0.600729976 0.73432757 0.64890360 0.5206679751 0.706590850 0.83668180
#> 18 0.261807405 0.70365677 0.18756242 0.0842680801 0.799116918 0.74054705
#> 19 0.643034251 0.73682406 0.23839289 0.2687653562 0.161331222 0.98576580
#> 20 0.526233507 0.11595042 0.63482652 0.8147157354 0.885932416 0.03208182