This function inserts NA's to the provided matrix according to the MAR (Missing At Random) patterns.
Arguments
- dat
a matrix or data.frame of data to be filled with some NA's.
- ratio
a number from 0 to 1 denoting the ratio of data to be exchanged into NA's
- thresh
a value from 0 to 1: limit value indicating maximum ratio of missing observations in one column
Details
This function uses ampute
. It firstly tries to
ampute missing data by metabolites (columns) and if it fails, it switches to
introduce missing values by samples (rows).
Examples
set.seed(1)
m <- as.data.frame(matrix(rnorm(10), 50, 5))
insert_MAR(m, ratio = 0.1)
#> V1 V2 V3 V4 V5
#> 1 -0.6264538 -0.6264538 -0.6264538 NA -0.6264538
#> 2 0.1836433 0.1836433 0.1836433 0.1836433 0.1836433
#> 3 -0.8356286 -0.8356286 NA -0.8356286 -0.8356286
#> 4 NA NA 1.5952808 1.5952808 1.5952808
#> 5 0.3295078 0.3295078 0.3295078 0.3295078 0.3295078
#> 6 -0.8204684 -0.8204684 NA -0.8204684 -0.8204684
#> 7 0.4874291 0.4874291 0.4874291 0.4874291 0.4874291
#> 8 NA 0.7383247 0.7383247 0.7383247 0.7383247
#> 9 0.5757814 0.5757814 0.5757814 0.5757814 0.5757814
#> 10 -0.3053884 -0.3053884 -0.3053884 -0.3053884 -0.3053884
#> 11 -0.6264538 -0.6264538 -0.6264538 -0.6264538 -0.6264538
#> 12 0.1836433 0.1836433 0.1836433 0.1836433 0.1836433
#> 13 -0.8356286 -0.8356286 NA -0.8356286 -0.8356286
#> 14 NA NA 1.5952808 1.5952808 1.5952808
#> 15 0.3295078 0.3295078 0.3295078 0.3295078 0.3295078
#> 16 -0.8204684 -0.8204684 -0.8204684 NA -0.8204684
#> 17 0.4874291 0.4874291 0.4874291 0.4874291 0.4874291
#> 18 NA 0.7383247 0.7383247 0.7383247 0.7383247
#> 19 0.5757814 0.5757814 0.5757814 0.5757814 0.5757814
#> 20 -0.3053884 -0.3053884 -0.3053884 -0.3053884 -0.3053884
#> 21 -0.6264538 -0.6264538 -0.6264538 -0.6264538 -0.6264538
#> 22 0.1836433 0.1836433 0.1836433 0.1836433 0.1836433
#> 23 -0.8356286 -0.8356286 NA -0.8356286 -0.8356286
#> 24 NA NA 1.5952808 1.5952808 1.5952808
#> 25 0.3295078 0.3295078 0.3295078 0.3295078 0.3295078
#> 26 -0.8204684 -0.8204684 -0.8204684 NA -0.8204684
#> 27 0.4874291 0.4874291 0.4874291 0.4874291 0.4874291
#> 28 NA 0.7383247 0.7383247 0.7383247 0.7383247
#> 29 0.5757814 0.5757814 0.5757814 0.5757814 0.5757814
#> 30 -0.3053884 -0.3053884 -0.3053884 -0.3053884 -0.3053884
#> 31 -0.6264538 -0.6264538 -0.6264538 -0.6264538 -0.6264538
#> 32 0.1836433 0.1836433 0.1836433 0.1836433 0.1836433
#> 33 -0.8356286 -0.8356286 NA -0.8356286 -0.8356286
#> 34 NA NA 1.5952808 1.5952808 1.5952808
#> 35 0.3295078 0.3295078 0.3295078 0.3295078 0.3295078
#> 36 -0.8204684 -0.8204684 -0.8204684 NA -0.8204684
#> 37 0.4874291 0.4874291 0.4874291 0.4874291 0.4874291
#> 38 NA 0.7383247 0.7383247 0.7383247 0.7383247
#> 39 0.5757814 0.5757814 0.5757814 0.5757814 0.5757814
#> 40 -0.3053884 -0.3053884 -0.3053884 -0.3053884 -0.3053884
#> 41 -0.6264538 -0.6264538 -0.6264538 -0.6264538 -0.6264538
#> 42 0.1836433 0.1836433 0.1836433 0.1836433 0.1836433
#> 43 -0.8356286 -0.8356286 NA -0.8356286 -0.8356286
#> 44 NA 1.5952808 1.5952808 1.5952808 1.5952808
#> 45 0.3295078 0.3295078 0.3295078 0.3295078 0.3295078
#> 46 -0.8204684 -0.8204684 -0.8204684 NA -0.8204684
#> 47 0.4874291 0.4874291 0.4874291 0.4874291 0.4874291
#> 48 NA 0.7383247 0.7383247 0.7383247 0.7383247
#> 49 0.5757814 0.5757814 0.5757814 0.5757814 0.5757814
#> 50 -0.3053884 -0.3053884 -0.3053884 -0.3053884 -0.3053884