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Streszczenie

Analizy bioinformatyczne i eksperymentalne bakteryjnych amyloidów funkcjon-

alnych CsgA i CsgB

Amyloidy to białka związane z wieloma zaburzeniami klinicznymi, takimi jak choroba

Alzheimera, Creutzfeldta-Jakoba czy Huntingtona. Mimo że białka te są mają zróżnicowaną

budowę, ich cechą wspólną jest to, że posiadają strukturę β-kartki i wykazują tendencję do

agregacji. Oprócz amyloidów niefunkcjonalnych, które mogą przyjmować różne struktury i są

błędnie złożonymi wersjami normalnych białek, istnieją również amyloidy funkcjonalne, które

spełniają ważne funkcje komórkowe. Jednymi z nich są białka curli, CsgA i CsgB, które stały

się przedmiotem niniejszej rozprawy.

W ramach tej rozprawy dokonaliśmy eksperymentalnej walidacji naszego oprogramowania

AmyloGram do przewidywania białek amyloidowych z wykorzystaniem tioflawiny T (ThT) oraz

mikroskopii sił atomowych (AFM). Algorytm skutecznie rozpoznał eksperymentalnie potwierd-

zone peptydy i był odporny na przeuczenie. Spośród 24 testowanych peptydów, znaleźliśmy 16,

które miały niepoprawne adnotacje w bazie AmyLoad.

Stosując bardziej obiektywne wyszukiwanie motywów, znaleźliśmy pięć powtarzających się

regionów w sekwencjach CsgA i CsgB. Regiony w CsgA są rozdzielone, mają 21 reszt i 9 miejsc

konserwatywnych, podczas gdy te w CsgB są przyległe do siebie, mają 22 reszty i 7 miejsc

konserwatywnych. Regiony te charakteryzują się specyficznym rozmieszczeniem reszt polarnych

i hydrofobowych, a także posiadają centralną glicynę, która rozbija dwie wstęgi β w danym

regionie. Stosując dokładniejsze porównania sekwencji, odkryliśmy dodatkowy region, który

jest umieszczony przed pozostałymi. Wykazuje on istotne podobieństwo do nich na poziomie

sekwencji i potencjalnie może przyjmować struktury β.

Aby odpowiedzieć na pytanie, jak ewoluowały białka CsgA i CsgB, zebraliśmy ponad 15,000

ich homologów z konserwatywnymi domenami curli. Większość z nich zawiera również typowy

N-terminalny peptyd sygnałowy. Rozległe analizy filogenetyczne wykazały, że białka te ewolu-

owały głównie u Bacteroidota, α-Proteobacteria i γ-Proteobacteria. CsgA i CsgB okazały się

odległymi homologami i pojawiły się w wyniku duplikacji, gdy γ-Proteobacteria oddzieliły się od

α- i β-Proteobacteria. Homologi te prawdopodobnie doświadczały poziomego transferu genów
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pomiędzy różnymi grupami bakterii, a także do grzybów.

Zbadaliśmy również szczegółowo białka CsgA i CsgB u Enterobacterales. Ich pięć zdup-

likowanych regionów wykazuje odpowiednio siedem i sześć konserwatywnych miejsc, w tym

reszty glicynowe, hydrofobowe i polarne, które są kluczowe do formowania struktur β.

Poszczególne regiony ujawniły różne tempo substytucji. Regiony CsgA ewoluowały szybciej niż

CsgB. Region 5 wykazał najniższą dywergencję, co jest prawdopodobnie wynikiem selekcji na

interakcje z regionem 1 innych cząsteczek białek curli. Zauważyliśmy ponadto duże korelacje w

dystansach ewolucyjnych regionów, co sugeruje ich skoordynowaną ewolucję. Silniejsze korelacje

w substytucjach zaobserwowaliśmy w regionach CsgA, co oznaczałoby, że interakcje między tymi

regionami w tym białku powinny być bardziej konserwatywne niż w CsgB.

Ponadto oczyszczaliśmy wybrane warianty CsgA i CsgB, które miały usunięte regiony i

badaliśmy wpływ tych regionów na szybkość agregacji przy użyciu eksperymentów ThT i AFM.

Stwierdziliśmy, że proces ten może być spowalniany przez region 1, podczas gdy region 5 jest

niezbędny do polimeryzacji fibryli amyloidowych ze względu na interakcje z regionem 1 innych

cząsteczek CsgA.

Poszukiwaliśmy także cech charakterystycznych dla sekwencji amyloidów funkcjonalnych i

niefunkcjonalnych. Mimo że amyloidy te są zróżnicowane, odkryliśmy specyficzne cechy, które

mogą być wykorzystane do ich rozpoznania. Małe hydroksylowane aminokwasy, seryna i treon-

ina, współwystępujące z innymi małymi aminokwasami, jak glicyną i alaniną, a także z polarną

asparaginą i kwasem asparaginowym, są bardzo rozpowszechnione w amyloidach funkcjonalnych.

Natomiast bardziej zasadowe aminokwasy, hydrofobowa leucyna, metionina i cysteina oraz po-

larna tyrozyna dominują w amyloidach niefunkcjonalnych. Na podstawie składu dipeptydów

i wskaźników aminokwasowych opracowaliśmy model lasów losowych, który z powodzeniem

przewiduje amyloidy funkcjonalne i niefunkcjonalne.

Wreszcie, opracowaliśmy bazę danych interakcji amyloidowych AmyloGraph, która gromadzi

wiedzę dotyczącą tego, jak dany amyloid wpływa na inny. Znaleźliśmy interakcje pomiędzy

białkami curli a innymi, 48 dla CsgA i 14 dla CsgB. Dzięki tej bazie danych możemy dowiedzieć

się, jak białka amyloidowe oddziałują ze sobą i wpływają na proces agregacji.
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Abstract

Amyloids are proteins associated with many clinical disorders, such as Alzheimer’s,

Creutzfeldt-Jakob and Huntington’s diseases. Although these proteins have diverse structures,

they share β-sheet structure and have a tendency to aggregate. Besides the non-functional

amyloids, which can adopt various structures and are misfolding versions of normal proteins,

there are also functional amyloids, which fulfill important cellular functions. Ones of them are

curly proteins, CsgA and CsgB, which became the subject of this thesis.

In the framework of this dissertation, we experimentally validated using Thioflavin T (ThT)

assay and Atomic Force Microscopy (AFM) our software AmyloGram for predicting amyloid

proteins. The algorithm recognized experimentally confirmed peptides effectively and was re-

sistant to overfitting. Out of 24 tested peptides, we found 16 that had inaccurate annotations

in the AmyLoad database.

Using more objective motif searching, we have found five repetitive regions in CsgA and

CsgB sequences. The repeating motifs in CsgA are separated, and have 21 residues and nine

conserved sites, whereas those in CsgB are adjacent, and have 22 residues and seven conserved

sites. The regions are characterized by a specific distribution of polar and hydrophobic residues

as well as the central glycine, which breaks two β-strands in a given region. By using a more

accurate sequence comparison, we discovered an additional region that is positioned before the

others and shows significant sequence similarity to them and may potentially fold into β-strands.

To answer the question of how evolved CsgA and CsgB proteins, we collected more than

15,000 their homologs with conserved curlin domains. The majority of them also include the

typical N-terminal signal peptide. Broad phylogenetic analyses showed that these proteins

evolved predominantly in Bacteroidota, α-Proteobacteria, and γ-Proteobacteria. CsgA and CsgB

turned out remote homologs and emerged by duplication when gamma-Proteobacteria diverged

from α- and β-Proteobacteria. The homologs probably experienced horizontal gene transfer

between various bacterial groups and also to fungi.

We also studied in detail CsgA and CsgB in Enterobacterales. Their five duplicated regions

show seven and six conserved sites, respectively, including glycine, hydrophobic, and polar

residues, which are crucial for folding into β-strands. The individual regions revealed various
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substitution rates. CsgA regions evolved more quickly than in CsgB. Region 5 has the lowest

rate of divergence, which is likely a result of the selection on interactions with region 1 of other

curly molecule. We noticed high correlations in evolutionary distances in the regions, which

suggests their coordinated evolution. Stronger correlations in substitutions were seen in CsgA

regions, which would mean that interactions between these regions in this protein should be

more conserved than in CsgB.

In addition, we purified selected CsgA and CsgB variants that had deleted regions and

studied the influence of these regions on the rate of aggregation using ThT assay and AFM.

We found that the process can be slowed down by region 1, whereas region 5 is essential for the

polymerization of amyloid fibrils due to interactions with region 1 of other CsgA molecules.

Moreover, we searched for sequence features characteristic of functional and non-functional

amyloids. Despite that these amyloids are diverse, we discovered specific traits that may be

used to recognize them. Small hydroxylated amino acids, serine, and threonine co-occurring with

other tiny glycine and alanine, as well as polar asparagine and aspartic acid, are highly prevalent

in the functional amyloids. But more basic amino acids, hydrophobic leucine, methionine, and

cysteine, and polar tyrosine dominate in the non-functional amyloids. Based on dipeptide

composition and amino acid indices, we elaborated a random forest model, which successfully

predicts the functional and non-functional amyloids.

Finally, we developed an amyloid interaction database AmyloGraph, which gathers knowl-

edge regarding how a particular amyloid affects another. We found interactions between curly

amyloid proteins and others, 48 for CsgB and 14 for CsgB. With the help of the database,

we can find out how amyloid proteins interact with each other and influence the aggregation

process.
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1 Introduction

1.1 General characteristics of amyloids

Amyloid proteins are a peculiar group of proteins that demonstrate a unique ability to as-

sembly into supramolecular filamentous aggregates (fibrils) characterized by the presence of

characteristic cross-β sheets. Amyloid fibrils are highly ordered, long, straight, and unbranch-

ing, as shown by microscopy, X-ray diffraction, and crystallography studies. These fibrils are

extremely resistant to degradation by proteolysis, sodium dodecyl sulfate (SDS), and other

detergents [Knauer et al., 1992, Chapman et al., 2002, Toyama and Weissman, 2011].

Amyloid fibrils are usually made of subunits named protofilaments, which in most cases curl

up around each other to form the mature fibril [Goldsbury et al., 1999, Jiménez et al., 2002].

Both natural and synthetic amyloid fibrils share a particular core structure. It consists of a β-

sheet conformation, in which the direction of β-strand hydrogen bonds runs along the β-strand

length and parallel to the fibril axis [Inouye et al., 1993, Makin and Serpell, 2005]. The β-

sheet ribbons are associated via side-chain interactions that stabilize the structure [Makin et al.,

2005]. The cross-β-sheet structure can be parallel or antiparallel within the protofilaments. The

arrangement of such a fibril depends on the properties of the protein from which it originates

[Gordon et al., 2004, Petkova et al., 2005].

The propensity of a protein to form amyloid fibrils depends on several factors, such as amino

acid sequence, electric charge, and hydrophobicity. Although the vast majority of amyloid fibrils

display a similarity at the secondary structural level, they show little similarity in their amino

acid composition [Eisenberg and Sawaya, 2017, Iadanza et al., 2018]. To describe in detail the

exact mechanism of amyloid fibril formation, we need to first define the differences between

various assembly states of amyloid proteins.

1.2 States of amyloid protein assembly

1.2.1 Monomers and oligomers

A monomer is a molecule that is a basic building block of proteins. One monomer can react

with other monomers in a polymerization process to create a much bigger macromolecule, an
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oligomer, or a polymer. Both show a regular repeating structure, but the oligomer has a lower

molecular weight than the polymer, although the boundary between their weight is arbitrary.

Monomers can be divided in various ways: synthetic and natural (biopolymers), polar and

non-polar, or cyclic and linear [Naka, 2014].

Amyloid oligomers are formed in the polymerization of monomers in a regular and repeating

fashion. They are supramolecular structures that are often named as amorphous or soluble

aggregates. They represent an intermediate form between the monomer and the amyloid fibril,

which is extremely important in the formation of new filamentous aggregates by a wide vari-

ety of amyloidogenic proteins [Narayan et al., 2012, Shammas et al., 2015]. They are highly

heterogeneous in size, structure, and stability. Unlike amyloid fibrils, oligomers are soluble in

solutions and have different structural and functional properties [Grundke-Iqbal et al., 1986].

The stability of oligomers is supported by a wide range of interactions with each other.

Typically, the interface between the units is formed by a central, adjacent hydrophobic patch

surrounded by hydrophilic residues and water molecules at its periphery. In addition, many

hydrogen bonds stabilize the structure. The oligomers typically contain specific structural

motifs such as coiled coils, leucine zippers, and helix-loop-helix, which are responsible for the

formation of α-helices. In the case of β-sheet, coiled-coil motifs dominate [Garratt et al., 2013].

1.2.2 Polymers and amyloid fibrils

Polymer is a class of very large complex compounds. They are created by the polymerization

of multiple monomers (Fig. 1). When they are built of monomers of the same chemical com-

position, molecular weight, or structure, they are called homopolymers, whereas those derived

from more than one species of monomer are named copolymers [Naka, 2014].

Amyloid fibrils have a unique structure characterized by the cross-β-sheet, where β-strands

run crosswise to the main fibril axis. Each fibril consists of several protofilaments that are

laterally coupled, and each protofilament consists of multiple oligomers. Distinctive features

of protofilaments are cross-β structures with β-strands, which are stacked perpendicular to the

long axis of the fibril. They usually have a width of 5–20 nm, polar topology, a left-handed

supertwist, and a twofold helical symmetry [Riek and Eisenberg, 2016, Schmidt et al., 2016,

Fitzpatrick et al., 2013, Annamalai et al., 2016, Ke et al., 2020, Iadanza et al., 2018].
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Figure 1: Amyloid fibril organization

Amyloid fibrils are highly polymorphic. The structural differences between them depend

on the particular polypeptide chain from which they are assembled. Polymorphism of amyloid

fibrils can be observed in both in vitro and in vivo. Changing environmental conditions during

fibril formation result in fibril morphologies that are quite different from native ones. This

makes the prediction of amyloid fibril structure much more complicated than protein folding

[Meinhardt et al., 2009, Fitzpatrick et al., 2013, Annamalai et al., 2016, Kodali et al., 2010,

Anfinsen, 1973].
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1.3 Stages of amyloid self-assembly

Recently, the theory of amyloid fibrils self-assembly has been formulated [Hellstrand et al.,

2009]. It postulates that the formation of a mature amyloid fibril has to initiate the process

called nucleation, which proceeds in two stages, primary and secondary nucleation. In primary

nucleation, monomers, of which the protofilaments are composed, associate into small aggregates

(Fig. 2A). It is done without involving already formed aggregates [Törnquist et al., 2018].

The formation of the first nuclei from the monomers requires very high energy. It is needed

to transition from their native to the amyloid state. Kinetics of the amyloid formation, for

amyloid-prone proteins, are characterized by a slow, rate-limiting nucleation step [Arosio et al.,

2015]. The secondary nucleation (Fig. 2B) occurs when the first amyloid-competent nuclei are

already formed. This process requires at least three molecular events: I) the arrival of monomers

to the surface of the fibril, II) the formation of monomers prone to aggregation, and III) the

release of aggregation-prone monomers. The secondary nucleation, in contrary to the primary

one, saturates at higher concentrations of monomers [Meisl et al., 2014, Törnquist et al., 2018].

A B

Figure 2: The primary and secondary nucleation. A. In the primary nucleation, monomers

of one protofibril nucleate in a solution. B. The secondary nucleation involves the nucleation of

monomers on the surface with an already existing amyloid aggregate. Light yellow circles symbolize

monomers and oligomers, and the dark blue rectangles protofibrils.
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1.4 Determinants of amyloid aggregation

One of the amyloid feature is a tendency to their aggregation. This process can compete

with protein folding [Tartaglia et al., 2008, Jahn and Radford, 2008, Chiti and Dobson, 2017]

because these two processes depend on the physicochemical properties of amino acid side chains.

Although, we can also call this process polymerization. Aggregation is described as a non-specific

process, while polymerization is described as a specific one. However, during the formation of

amyloid aggregates, both processes can occur simultaneously [Frieden, 2007].

In the amyloid aggregation, their polypeptide chains might be also responsible for the propen-

sity of molecules to aggregate. The ability of a protein to adopt a functionally specific and ther-

modynamically stable three-dimensional structure, as well as the transition from the unfolded

state to the native conformation, is encoded in the protein’s primary structure, i.e. its amino

acid sequence.

This encoding of the protein structure in the amino acid sequence of the protein suggests

that aggregation determinants in polypeptide chains are found not only in proteins responsible

for various diseases but also in non-toxic ones, which are also able to form oligomers due to

abnormal wrapping or so-called functional amyloids, which have some function in organisms.

Studies of the de Groot et al. [2005] indicated that the presence of so-called “hot spots” or

protective residues are responsible for such sequence properties as hydrophobicity, a tendency to

adopt a β-sheet structure. The hot-spot theory has been confirmed by analyzing aggregation-

prone sequences that were devoid of defined three-dimensional conformations [Santos et al.,

2020].

Hydrophobicity is one of the main forces responsible for binding both internally and exter-

nally the amino acid chains. At the same time, this force influences the formation of oligomers

[Riek and Eisenberg, 2016, Durell and Ben-Naim, 2017]. This is confirmed by studies conducted

by Jahn and Radford [2008] during which polar residues were swapped for non-polar ones, re-

sulting in a higher tendency of proteins to aggregate. The secondary structure is also important

in amyloid aggregation. A larger amount of β-sheet structures was detected in proteins capable

of aggregation, which increases their stability by forming hydrogen bonds between the main

polypeptide chains [Ventura, 2005, Kulandaisamy et al., 2017].

Hot spots are short amino acid sequences that have a high tendency to aggregate and are
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responsible for protein oligomerization. They are characterized by the presence of numerous

hydrophobic residues, both aliphatic (Val, Leu, Ile) and aromatic (Phe, Tyr, Trp) ones [Ventura

et al., 2004]. The hot spots can be generated by just one inappropriate mutation in a protein,

which can start its aggregating. One mutation will not significantly increase the overall hy-

drophobicity of the protein, but will significantly affect the rate of aggregation [Carija et al.,

2017].

1.5 Functional and non-functional amyloids

Amyloids can be divided into two groups. One includes functional amyloids, containing

proteins that can be utilized in many organisms to fulfill a variety of functions [Blanco et al.,

2012, Schwartz and Boles, 2013, Balistreri et al., 2020]. The second group, non-functional

amyloids are associated with various neurodegenerative diseases, caused by protein misfolding

[Cooper et al., 1987, Prusiner, 1996]. Both groups share similar structural and biochemical

properties. The functional amyloids are assembled by highly regulated biosynthetic pathways

[Blanco et al., 2012], whereas the non-functional ones can change their conformation which leads

to loss of function and is associated with many diseases.

1.5.1 Functional amyloids

The functional amyloids were detected in many bacteria, fungi, insects, plants and mammals

(Tab. 1), where they fulfill crucial molecular and cellular functions[Romero and Kolter, 2014,

Santos and Ventura, 2021]. The amyloid proteins produced by bacteria, in most cases, perform

physiological tasks on the cell surface. They are involved in biofilm formation, adhesion, host-

pathogen interactions and host cells invasion. We can distinguish here, e.g., curli proteins,

which are produced by Escherichia coli and Salmonella spp. [Chapman et al., 2002, Wang

and Chapman, 2008], Pseudomonas fluorescens FapC protein [Dueholm et al., 2010], chaplins

formed by Streptomyces spp. [Elliot et al., 2003] and Xanthomonas axonopodia harpins [Oh

et al., 2007]. The mechanism of biofilm formation by Fap is highly similar to that of E. coli

curli proteins [Dueholm et al., 2013]. All of these proteins are fully functional and help the

bacteria to promote multiple interactions between other them and other microbes.
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HET-s protein present in fungus Podospora anserina is responsible for the fusion of com-

patible heterokaryons, i.e. multinucleate cell that contains genetically different nuclei [Wasmer

et al., 2008, Turcq et al., 1991]. The process is called heterokaryon incompatibility and en-

sures that during spontaneous, vegetative cell fusion only compatible cells from the same colony

survive.

Functional amyloids can also be found in various multicellular organisms. Hevb1 is a Rubber

Elongation Factor in Hevea brasiliensis and takes a part in the biosynthesis of natural rubber

but could be also involved in defense/stress mechanisms[Berthelot et al., 2012]. Cn-AMP2 is an

antimicrobial peptide found in Cocos nucifera [Gour et al., 2016] and RsAFP-19, an antifungal

peptide present in Raphanus sativus [Garvey et al., 2013]. Vicilin from Pisum sativum L. takes

a part in detergent resistance and also displays antifungal activity [Santos and Ventura, 2021].

Spider’s spidroin and silkworm fibroin are known to form insoluble silk. Fibroin is a structural

element of silk, which had been successfully applied for various biomedical purposes [Zhang

et al., 2012].

Functional amyloids were also identified in mammals. Pmel17 helps the maturation of

melanosomes, leading to the synthesis of melanin, which protects cells against UV radiation

and oxidative damage [Fowler et al., 2006]. There is also a shred of evidence that peptides

and protein hormones, found in secretory granules of the endocrine system, are stored in the

cross-β-sheet conformation as typical amyloids [Maji et al., 2009]. Interestingly, Rip1 and Rip3

kinases can be also considered as functional amyloids. They are involved in necroptosis, a type

of programmed cell death with necrotic morphology. Motifs found in these proteins mediate the

assembly of heterodimeric filamentous structures [Li et al., 2012, Liu et al., 2019].

1.5.2 Curli proteins

Curli proteins are typical functional amyloids produced by gram-negative bacteria, mostly

Enterobacteriales, are CsgA and CsgB [Dueholm et al., 2012]. These proteins are exported

outside the cell into the extracellular matrix, where they participate in biofilm formation. The

biofilm also includes other proteins and polysaccharides, which protect multicellular communi-

ties from chemical and physical stresses. Living in biofilms provides benefits because biofilmic

bacteria are more resistant to antibiotics and the host’s immune system [Simm et al., 2014,
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Jamal et al., 2015].

The main curli protein, involved in the development of biofilm scaffolds, is CsgA. It is a 151-

residue amyloid protein, encoded by csgBAC operon. This protein consists of the 22-residue

signal peptide targeting this protein outside the cell, and the amyloid core domain, whose

sequence includes five non-identical repeats (R1-R5). Each of these regions contains a common,

highly conserved motif (Ser-X5-Gln-X-Gly-X-Gly-Asn-X-Ala-X3-Gln) (Fig. 3) [Barnhart and

Chapman, 2006, Evans and Chapman, 2014, Chapman et al., 2002]. When CsgA is incorporated

into an amyloid fibril, a strand–loop–strand motif in each repeat stacks between the neighboring

repeats and is stabilized by hydrogen bonds in a β-sheet. CsgA fibrils are resistant to chemical

and proteolytic degradation. These fibrils can be identified by dyes, e.g., thioflavin T (ThT)

and congo red (CR), binding to the amyloid. The amyloid fibrils can also be visualized under

transmission electron microscopy (TEM) or atomic force microscopy (AFM) [Malmos et al.,

2017b, Erskine et al., 2018].

In order to CsgA could start creating the fibrils, an initiator is necessary. Such a role is

fulfilled by a nucleator CsgB, another curly protein encoded in the csgBAC operon. Similar

to CsgA, it also contains a signal peptide, 23 amino acid residues long, and an amyloid core

domain, which also includes five repeating units (Fig. 3). However, only the regions R1–R4

contain a common conserved motif (Ala-X3-Gln-X-Gly-X2-Asn-X-Ala-X3-Gln). The R5 instead

contains four positively charged amino acids (one lysine and three arginines), which are absent

from the other repeating units [Barnhart and Chapman, 2006, Dueholm et al., 2012, Evans and

Chapman, 2014, Chapman et al., 2002, Dunbar et al., 2019].

Although each repeat shows a similarity with others, they are not functional equivalents.

The repeats R1 and R5 in CsgA form amyloid fibrils and are critical to the CsgA seeding ability

and the nucleation by CsgB. The internal repeats R2-R4 contain ’gatekeeper’ residues that

modulate the amyloid formation by softening the amyloidogenicity of CsgA. The exposure of

R1 or R5 on the growing tip of a curli fibril contributes to its efficient elongation. They provide

a recognition site for subsequently secreted CsgA monomers [Wang et al., 2008].

The interchangeability of CsgA regions was studied by Wang et al. [2010]. These authors

used bacteria with the deletion of csg operon genes and complemented them with constructed

plasmids. The replacement of the R1 region by R5 and vice versa had no major impact on the
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Figure 3: Sequence organization of CsgA and CsgB proteins. They consist of a signal peptide,

a separating sequence (N22 and N23) and the non-identical repeating units (R1–R5), which were

aligned. Boxed columns represent amino acids conserved throughout the repeating units in one or

both proteins. Modified from Hammer et al. [2007].

formation of amyloid fibrils. In contrast, the replacement of the above-mentioned regions with

R3 resulted in a decrease in this formation. Furthermore, the plasmid including gene CsgA with

interchanged regions R1 and R5 could not compensate the lack of CsgA and CsgB. However,

the plasmid with only R1 and R5, deprived of the gatekeeping regions (R2, R3, and R4), was

able to form fibrils [Wang et al., 2008, 2010].

In the case of CsgB, the repeats R4 and R5 are responsible for the CsgA nucleation in vivo.

The mutation in these regions caused that this protein was not localized in the outer membrane,

instead, it was secreted into the extracellular matrix, but the deletion of regions R1, R2 or R3

had no impact on the nucleation [Hammer et al., 2012].

Although these experiments revealed the importance of the individual repeats in amyloido-

genicity, they were conducted on selected curly proteins and bacteria, which likely do not rep-

resent their whole variation. It is also not known how their unique sequence organization origi-

nated and evolved. Current analyses of curli proteins included only the closest homologues and

did not explore this subject [Dueholm et al., 2012]. The curli proteins and their distant homo-

logues may be more widespread in the bacteria world than it is commonly assumed. Moreover,

the mechanism of interaction between CsgA and CsgB is still not known in detail. Finding evo-

lutionary conserved and variable sites in their sequences can help to determine their functional

and structural significance. Therefore, we decided to study these issues in this project.
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1.5.3 Non-functional amyloids

Many different proteins or peptides are known to form non-functional amyloids (Tab. 1). In

a native state, they fulfill normal functions but after misfolding, they aggregate and can cause

many diseases.

Some of them are involved in human disorders called amyloidoses [Baker and Rice, 2012].

These proteins are amyloid-β (Aβ) present in Alzheimer’s disease, α-synuclein in Parkinson’s

disease, huntingtin in Huntington’s disease, and β2-microglobulin (β2M) in dialysis-related amy-

loidosis [Vidal and Ghetti, 2011, Sipe et al., 2016a, Knowles et al., 2014, Chiti and Dobson, 2017].

They can also occur in other types of disorders like type II diabetes [Hull et al., 2004]. Pri-

ons (PrP) cause Creutzfeldt-Jakob disease and other transmissible spongiform encephalopathies

[Gibbs et al., 1968].

Fibrils of previously mentioned amyloids can accumulate in extracellular plaques, which

might disrupt cellular physiology by blocking the transport of proteins and other non-protein

components to the cell [Sipe et al., 2016b, Drummond et al., 2017]. Almost all proteins, which

can turn into amyloids, have known functions but in their native state. When the proteins

adopt the cross-β structure, it transforms the molecules into solid fibrils, causing the loss of

function.

It was found that several lipoproteins, antibodies and IAPP (Islet Amyloid Polypeptide),

but in the amyloid form, are not able to fulfill their primary functions, which leads to Apo-AI

amyloidosis, light-chain amyloidosis and diabetes [Malmberg et al., 2020].

The most studied non-functional amyloids, which cause neurodegenerative disorders, are

Aβ, PrP and α-syn. In the native state, Aβ is important for synaptic plasticity and memory

[Puzzo et al., 2011]. PrP is involved in myelin maintenance and cellular proliferation processes

[Legname, 2017], whereas α-syn takes a part in the regulation of neurotransmission and response

to cellular stress [Benskey et al., 2016].
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Table 1: List of various proteins forming amyloid fibrils.

Protein name Functional
amyloid

Function

AIMP2 no takes a part in the assembly of the aminoacyl-tRNA synthase
complex

Albumin no functions as a transporter for a diverse range of molecules,
including hormones, vitamins, and enzymes

α-crystallin no major lens protein

α-lactalbumin no regulates the lactose production in milk

α-S2-casein no unknown function

α-synuclein no plays multiple roles in synaptic activity

Amyloid β no plays an important role in neural growth and repair

Apolipoprotein A-I no takes a part in the transport of cholesterol to the liver

Apolipoprotein E no involved in fat metabolism

β-casein no phosphoprotein found in milk

β-crystallin no structural protein of unknown function

β-lactoglobulin yes transport protein

β-parvalbumin yes involved in muscle relaxation

β2-microglobulin no lymphocyte surface modulator and potential regulator of the
immune system

Bri2 yes potential regulator of amyloid-β protein precursor processing

CRES yes involved in sperm development and maturation

CRES3 yes might be involved in spermatogenesis

CsgA yes involved in biofilm formation

CsgB yes involved in biofilm formation

Cystatin C no inhibits cysteine proteases

Cytochrome C no involved in the electron transport chain in mitochondria and
apoptosis

delta-toxin no lyses erythrocytes and other mammalian cells

DJ-1 no regulates transcription and signal transduction pathways

FapC yes involved in biofilm formation

Fibroin yes core component of silk filament

FUS no RNA-binding proteins regulating transcription

γ-crystallin no major lens protein

GroES no inhibitor of ATP hydrolysis

HET-s yes involved in heterokaryon incompatibility process

IAPP no maintain glucose levels

Insulin no carbohydrates and fat metabolism regulator
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Table 1: List of various proteins forming amyloid fibrils. (Continued).

Protein name Functional
amyloid

Function

κ-casein no phosphoprotein found in milk

Lysozyme no antimicrobial agent

Medin (AMed) no induces endothelial dysfunction and vascular inflammation

Myoglobin no serves as a reserve supply of oxygen for muscles

New1 (NU+) yes involved in translation, termination, and recycling

p53 no plays an essential role in tumor suppression

p73 no plays an essential role in tumor suppression

Pmel17 yes mediates formation of melanosomes

Polyglutamine (polyQ) no stabilizes protein interactions

proSP-C no stabilization of the protein structure

PrP no receptor of β-amyloid peptide oligomers

PSMα1 yes might be involved in biofilm structuring

PSMα2 yes might be involved in biofilm structuring

PSMα3 yes might be involved in biofilm structuring

PSMα4 yes might be involved in biofilm structuring

PSMβ1 yes might be involved in biofilm structuring

PSMβ2 yes might be involved in biofilm structuring

Rnq1 (PIN+) no unknown function

S100A9 no calcium binding proteins

Sericin yes joins two fibroin filaments forming a silk yarn

Serum amyloid A no acute-phase protein

SEVI (PAP 248-286) yes increase the infectivity of HIV

Sup35 (Psi+) yes factor of translation termination

Tau no plays a role in a broad range of biological processes

TDP-43 no performs several mRNA-related processes in the nucleus

Transthyretin no thyroxin transport and retinol binding

Tubulin no forms microtubules

Vicilin yes involved in detergent resistance and antifungal activity

1.5.4 Prions

Prions, i.e. proteinaceous infectious particles, are a special group of non-functional amyloids.

Unlike normal amyloids, their aggregation becomes self-perpetuating and infectious. Prions
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can infect not only individuals among the same species but also between different species.

In mammals, prions cause various progressive neurodegenerative brain disorders, known as

transmissible spongiform encephalopathies [Aguzzi and Calella, 2009]. They include scrapie in

sheep [Wood et al., 1992], bovine spongiform encephalopathy (BSE) in cattle [Wells et al., 1987],

and Creutzfeldt-Jakob disease in humans [Gibbs et al., 1968]. However, in fungi, they play an

important role in epigenetic inheritance [Chien et al., 2004]. Prions consist of PrPSc, which are

abnormally folded and protease-resistant forms of the physiological cellular versions of the PrPC

[Bolton et al., 1982]. Most of the PrPSc, as other amyloids, are highly resistant to proteases,

heat, and decontamination methods. However, some evidence shows that these properties do

not correlate with infectivity because the majority of infections are associated with oligomers

that are proteinase-sensitive [Aguzzi and Lakkaraju, 2016].

The aggregation of prions reassembles those in other amyloids. Highly ordered PrPSc

oligomers incorporate soluble PrPC. Large PrPSc fibrils can break into smaller fragments, each

of which can initiate a new aggregation cycle [Cox et al., 2003].

1.6 Experimental confirmation of amyloid-like assembly

We can divide amyloid examination methods into two types, direct and indirect. The direct

method is when protein content is calculated based on the analysis of amino acid residues to get

the results. The indirect technique is when we infer results from other compounds or reactions,

e.g. nitrogen determination or chemical reactions with functional groups within a protein. These

methods are not always accurate, as they usually require protein extraction and purification for

further analysis. In addition, various mathematical calculations are required to obtain a result.

1.6.1 Thioflavin T assay

One of the most commonly used methods to detect amyloid fibrils is based on the ben-

zothiazole dye — thioflavin T [Giehm and Otzen, 2010]. It binds to cross-β-sheet structures

commonly present in amyloids. The interaction of fibrils with ThT is highly specific within

proteins, which makes it an excellent fluorescent probe for all known amyloidogenic proteins

and peptides, regardless of their origin [Malmos et al., 2017a].

The mechanism of ThT action and the enhancement of its fluorescence upon binding to
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amyloid is related to the rotational immobilization of the central C-C bond, which connects

the benzothiazole and aniline rings [Srivastava et al., 2010, Voropai et al., 2003]. It is widely

recognized that ThT binds to side chains along the long axis of amyloid fibrils. In addition,

the binding site of ThT on the fibril surface is believed to involve at least four β-sheet subunits

[Krebs et al., 2005, Wu et al., 2009, Biancalana et al., 2009].

ThT displays an enhanced fluorescence and dramatic shift of the excitation maximum (from

385 nm to 450 nm) and emission maximum (from 448 nm to 482 nm) [Biancalana and Koide,

2010, LeVine, 1993]. In 1989 Naiki et al. [1989] proved that the fluorescence emission of ThT

shows a linear relationship between the amyloid fibril concentration and the emission intensity.

ThT concentrations at 20-50 µM have been shown to give the highest fluorescence intensity.

However, a higher concentration can affect the amyloid formation, although this is protein-

dependent. The concentration of 10-20 µM is recommended for studying the kinetics of amyloid

aggregation, whereas 50 µM ThT is recommended for quantifying pre-formed amyloid fibrils

[Xue et al., 2017].

So far, recent studies contradict the linear relationship of ThT in the substoichiometric

concentration range. This may be due to the sensitivity of ThT to self-quenching during binding

to amyloid. To prevent this, excess or equimolar concentrations of ThT, whose self-quenching

ceases at higher ratios, should be used. This can also result in the saturation of ThT binding to

amyloid fibrils, which is less variable over time [Sulatskaya et al., 2014, Lindberg et al., 2017].

The use of ThT also has disadvantages. Thioflavin is capable of binding to DNA, cyclodex-

trin or SDS micelles. Moreover, in the case of amyloids, it can bind to the surface of fibrils. For

this reason, this method should be used with caution, and we should be sure which compounds

are in the solution to eliminate those that can co-react. The ThT emission is also affected by pH,

ionic strength, buffer viscosity and type of amyloid fibrils. In addition, some small molecules

may have a similar structure to ThT and compete with the binding site. ThT assay is also

unable to fully detect early amyloid aggregates [Malmos et al., 2017a].

1.6.2 Atomic Force Microscopy

Atomic Force Microscope (AFM) was originally developed as a technique for surface char-

acterization in solid material science. Nowadays, it is used in vast areas of research and became
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one of the most powerful tools in biology, materials science, and nanotechnology [Adamcik and

Mezzenga, 2012].

AFM is a scanning probe method that relies on the piezo-driven movement of a sharp probe

tip across a sample surface, generating deflections in the cantilever attached to the probe.

A topographical map is created from deflections from each scanned pixel. AFM does not

rely on light or electron beams for imaging, which makes that the resolution is not limited by

diffraction. Since the AFM does not need vacuum conditions to operate effectively, it has become

an invaluable tool for scientists interested in studying surfaces at the nanoscale. This can provide

a view on the structural and morphological characteristics of amyloid fibrils, which includes their

contour, length, width, height, periodicity or high-order assembly of single protofilaments into

mature fibrils [Round and Miles, 2004, Adamcik and Mezzenga, 2012, G. Creasey et al., 2012].

AFM operates using, for example, an optical detection system, which is the most common.

This is due to the fact that it has a simple and robust principle of laser detection with a

photodiode. It points the laser at the end of the cantilever, where the probe tip is attached and

on which the photodiode is located. The laser reflects off it, depending on the movement of the

cantilever, which is monitored by appropriate detectors. Thus, based on changes in the voltages

on the photodiode, the direction of the cantilever can be determined [Santos and Castanho,

2004, Morris et al., 2009].

This technique can be operated in two imaging modes: contact mode (static) and tapping

mode (dynamic). In the contact mode, the probe is brought into contact with the surface and

then “dragged” laterally across the surface. The force between the cantilever and the surface is

maintained by keeping the deflection of the cantilever constant. This causes three values to be

obtained when scanning the sample, height, deflection, and friction [Ascoli et al., 1994, Santos

and Castanho, 2004]. In the tapping mode, the cantilever oscillates near its resonant frequency,

which is monitored for changes caused by interaction with the surface. Intermittent contact

between the probe and the surface reduces the chance of damage to the probe or surface. This

mode allows the detection of the values of height, amplitude error, and phase. In addition, this

mode is commonly used for preliminary studies of biological surfaces due to its mild and robust

operational characteristics, as it does not lead to damage or shape change of the material under

study [Ascoli et al., 1994, Silva, 2005, García and Pérez, 2002, Morris et al., 2009].
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AFM can also be used to determine Young’s modulus. This is a factor that determines the

elasticity of the material under test in tension and compression. Each material has its own

characteristic value between the linear deformation and the stress that occurs in it. Amyloid

fibrils are one of the stiffest biological materials known today, with Young’s modulus of 3-20

GPa. In addition, amyloid fibrils show high resistance to fracture. Their ultimate strength has

been shown to be on the order of 0.6 GPa, which is comparable to steel [J. Roa et al., 2011, Liu

et al., 2020, Lamour et al., 2017, Smith et al., 2006, Scheibel et al., 2003].

1.6.3 Hydrogen Deuterium Exchange Mass Spectrometry (HDX-MS)

Hydrogen exchange mass spectrometry is one of the most robust analytical methods for

studying protein conformations and dynamics. It monitors a hydrogen isotope exchange in

the amides of the protein backbone, making this approach highly sensitive for studying protein

conformation and dynamics along the entire protein backbone, except proline [Jensen and Rand,

2016]. This method was first used to study the protein structure by Zhang and Smith [1993] in

1993. It is based on an isotopic exchange of the protein under study in the excess of deuterium,

followed by its fragmentation by pepsin under quenching conditions [Rosa and Richards, 1979,

Englander et al., 1985]. Then, it measures changes in the content of deuterium, which is located

in labile side chain groups or in the N-terminal amine group and exchanges much faster than

hydrogen ions contained in the main amide chain [Jensen and Rand, 2016].

The advantage of the HDX-MS method is that it does not require covalent labeling of the

protein under study, large amounts of sample, and tolerates its heterogeneity and complexity

[Martens et al., 2018, Jia et al., 2020]. The disadvantage, on the other hand, is the lack of strict

information about distance changes associated with conformational transitions. One can only

learn about the H-bond stability of the amide backbone, determined mainly by the parameter

of local structural dynamics and solvent availability [Martens et al., 2018, Vadas and Burke,

2015].

Two types of HDX can be distinguished, continuous and pulsed. The continuous HDX is the

most widely used. In it, the protein under study is diluted in D2O buffer at different times, and

then deuterium uptake is measured. The increased deuterium uptake as a function of exchange

time provides information about the protein’s conformation [Engen, 2009, Konermann et al.,
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2011]. The pulsed HDX, on the other hand, examines short time windows between incubation

of the protein under study for different lengths of time. Changes in the deuterium uptake help

to determine which populations of molecules are in solution [Pan et al., 2005, Zhang et al., 2013,

Wang et al., 2015].

1.7 Prediction of amyloids

All predictors of the protein 3D structure are based on Anfinsen’s thermodynamic hypothesis

[Anfinsen, 1973]. It states that all information about the protein folding is encoded by its amino

acid sequence and the protein’s native state is characterized by the lowest free energy. This

postulate formed the basis for the development of various computer simulations, which try

to predict protein conformations using an energy-driven scoring method identifying the lowest

energy state [Anfinsen, 1973, Anfinsen and Scheraga, 1975, Levitt and Warshel, 1975]. However,

this assumption can be violated by many proteins that undergo aggregation and misfolding. One

of them are amyloid proteins.

Over the years, a good deal of various software for amyloid prediction have been developed.

Different methods or combinations have also been used to obtain good results. Currently, we

can distinguish, among others, methods based on the physicochemical properties of amino acids,

their order in the protein secondary structure and thermodynamic interactions between them

or methods based on machine learning.

1.7.1 Structure-based methods

Structure-based approaches to predict protein amyloidogenicity are based on the protein

structure as input data, taking into consideration their folding and native state. This involves

the use of solvent accessibility of protein residues to estimate surface hydrophobicity. Moreover,

short simulations of molecular dynamics are performed to calculate protein retention (proteins

that are retained in the endoplasmic reticulum after folding) over time. However, this method

might not be applied to highly dynamic proteins.

An example of this approach is Aggrescan3D 2.0 [Pujols et al., 2018, Kuriata et al., 2019],

which in addition to the features listed above, also simulates changes in the protein solubility and

stability upon mutation and conformational fluctuations in the amyloid aggregation. Thanks
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to the extended dynamics calculations, it allows for studying larger proteins and screening for

functional protein variants with improved solubility. In addition, Aggrescan3D Database is

available. It contains the analyzed human proteome in terms of their aggregation properties

[Badaczewska-Dawid et al., 2021].

Other programs, AggScore [Sankar et al., 2018] use the distribution of hydrophobic and

electrostatic patches on the protein surface, including the intensity and relative orientation of

surface patches. PASTA 2.0 is based on the data derived from the protein secondary structure

to make a residue-residue contact map [Walsh et al., 2014]. On top of that, it also uses the

residue-residue energy potential and scoring functions for β-sheet structure formation. It is

worth noting that Aggrescan3D 2.0 and AggScore can be used to predict amyloid aggregation

and globular proteins, whereas PASTA 2.0 is specific for amyloids.

1.7.2 Machine learning methods

Machine learning (ML) is a part of artificial intelligence (AI) and computer science. It

focuses on the use of data and algorithms to imitate the way in which humans learn, gradually

improving its accuracy. Nowadays, ML is an important part of the growing field of data science

and biology.

Predictions are based on the use of one of three main classification methods:

• supervised machine learning, in which labeled datasets are used to classify data or predict

outcomes;

• unsupervised machine learning, which is used to analyze and cluster unlabeled datasets;

• semi-supervised learning, which shows properties between the supervised and unsupervised

ML. It uses a smaller labeled data set to guide classification and feature extraction from

a larger unlabeled data set.

Almost all existing tools for the prediction of amyloid-like proteins utilize supervised learn-

ing. However, to train a non-deep supervised model, they need to transform information hidden

in an amino acid sequence to a tabular or matrix format of various features because the protein

sequences are not structured data. One of the possibilities is to encode the sequence using
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the physiochemical and biochemical properties of amino acids. This approach is used in, e.g.,

AGGRESCAN [Conchillo-Solé et al., 2007] and APPNN [Família et al., 2015], which also in-

cludes the frequency of β-sheet structures. WALTZ [Lopez de la Paz and Serrano, 2004] and

Zyggregator [Tartaglia and Vendruscolo, 2008] are based on identifying sequence patterns of

peptides, which form amyloid-like fibrils in vitro. Software like TANGO [Belli et al., 2011] and

BetaSerpentine [Bondarev et al., 2018] estimate the probability of amino acid sequence segment

to form β-sheet structures, which mediate the protein aggregation. Another method is based

on identifying amyloidogenic sequence patterns called n-grams. They are continuous or discon-

tinuous sequences of n elements used in, e.g., Budapest Amyloid Predictor [Keresztes et al.,

2021] and software developed by our team AmyloGram 1.0 [Burdukiewicz et al., 2017]. The

only tool that utilizes unsupervised ML is Cordax [Louros et al., 2020b]. It clusters sequences

using t-Distributed Stochastic Neighbor Embedding (t-SNE).

Table 2: List of example software for prediction of amyloid properties of proteins
and peptides.

Software Size of train-
ing dataset

Sequence encoding Model

AGGRESCAN 57 polypeptide sequence amino acid properties

APPNN 296 orthogonal encodings artificial neural networks

WALTZ 213 polypeptide sequence computational

Zyggregator no data polypeptide sequence amino acid properties

Budapest Amy-
loid Predictor

948 and 553 n-grams SVM

AmyloGram 1.0 1088 (6) and
1887 (6-10) and
2373 (6-15)

n-gram random forest

TANGO no data polypeptide sequence computational

BetaSerpentine no data polypeptide sequence structural

Cordax 1402 hexapeptides t-SNE clusters

1.7.3 AmyloGram 1.0

AmyloGram 1.0 [Burdukiewicz et al., 2017] is an amyloidogenicity prediction software, which

uses n-grams, i.e., continuous or discontinuous sequences of n elements. They are widely used in
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the analysis of biological sequences, thanks to their highly interpretable nature. These features

help to identify motifs responsible for amyloidogenic properties of peptides, because the shortest

motif can have a length of only six residues [de Groot et al., 2005].

The data set used to train AmyloGram was extracted from AmyLoad [Wozniak and Kotulska,

2015]. It contained 421 amyloid peptides and 1044 non-amyloid peptides. Peptides with a

sequence length shorter than six and longer than 25 amino acids were removed. The former

were too short and the latter too rare and diverse. The final dataset contained 397 amyloid and

1033 non-amyloid peptides.

Overlapping hexapeptides were extracted from the dataset and labeled as amyloid or non-

amyloid based on the annotation in the database. Since hexamers from longer peptides may

not always have amyloidogenic properties as the peptide from which they were extracted, false

positive or false negative amyloid motifs could be used to train AmyloGram. To diminish this

problem, the maximum length of peptides in the training set was restricted to 15 amino acids.

Finally, the training set consisted of 3 groups that differed in length (6, 6-10 and 6-15 amino

acid residues).

The algorithm also utilizes a reduced amino acid alphabet, which represents certain sub-

groups of amino acids retaining information about protein properties. As several studies show,

peptide structures do not depend only on amino acid sequence, but also on their general phys-

iochemical properties [Murphy et al., 2000]. Multiple reduced alphabets based on various com-

binations of physiochemical properties of amino acids were created. After cross-validation of

reduced alphabets, 18,535 unique amino acid encodings, which used 17 peptide physiochemical

properties, were extracted. The best-reduced alphabet consisted of six amino acid groups (Tab.

3). The selected hexapeptides were encoded using the reduced alphabet. As classification for the

cross-validation, the random forest method was used, and only discriminating n-grams selected

by Quick Permutation Test were considered [Burdukiewicz et al., 2017].
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Table 3: Best performing amino acid encoding used in amyloidogenicity prediction
of peptides by AmyloGram 1.0.

Subgroup ID Amino acids

1 I G
2 II K, P, R
3 III I, L, V
4 IV F, W, Y
5 V A, C, H, M
6 VI D, E, N, Q, S, T

1.7.4 AlphaFold

Another ML predictor, which has recently become extremely popular, is AlphaFold devel-

oped by Google DeepMind [Callaway, 2020]. For two consecutive iterations of CASP [Callaway,

2020], a worldwide benchmark focused on the prediction of protein structure, AlphaFold has

consecutively outperformed other methods. Structures modeled by AlphaFold had more accu-

rate domains and side chains. Moreover, it can provide estimates of predictions [Jumper et al.,

2021, Senior et al., 2020].

To achieve such outcomes, AlphaFold utilizes several methods. It includes novel neural

network architectures, evolutionary-based training procedures, as well as physical and geometric

constraints of protein structures. The use of these techniques allows the development of a

new way to jointly embed multiple sequence alignments, a new output representation enabling

accurate end-to-end structure prediction, iterative improvement of predictions by the use of

intermediate losses, and learning from unlabeled protein sequences. This predictor is able to

predict 3D coordinates of all heavy atoms of a protein from primary amino acid sequence and

aligned sequences of homologs [Jumper et al., 2021, Senior et al., 2020].

1.8 Difficulties in modeling of amyloids

While AlphaFold is a breakthrough model for the 3D structure prediction of globular pro-

teins, it is not effective for a significant fraction of disease-associated amyloids or other aggre-

gating proteins. They contradict Anfinsen’s postulate, on which AlphaFold is based. In their
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case, the assumption that the primary amino acid sequence determines the 3D structure can

be invalid. The main reason for it is that these proteins contain the chameleon sequences or

intrinsically disordered regions (IDRs) [Pinheiro et al., 2021]. The former are able to adopt

different secondary structures despite having the same sequence. This is related to the transi-

tion between the α-helix and β-sheet structures. This mechanism is found in the prion protein

(PrP) [Bahramali et al., 2016, Gendoo and Harrison, 2011, Guo et al., 2007]. The latter, on the

other hand, lack a specific 3D structure while retaining their functions. IDRs exist as dynamic

conformation assemblies. They have the ability to swiftly change from one conformation to

another, from extended one to compact one. This property allows them to bind to many other

proteins and ligands, performing diverse functions [Das and Pappu, 2013, Van Roey et al., 2014,

Tompa, 2012, García-Jacas et al., 2022].

Liquid–liquid phase separation is one more thing that affects the correct prediction of amy-

loids. The process involves the formation of membrane-less compartments in the cell that have

important physiological but also pathological functions [Banani et al., 2017, Lyon et al., 2021].

In this case, proteins undergo an aggregation process to become amyloids through a condensa-

tion pathway instead of a deposition one. Research is currently being conducted on whether the

amino acid sequence affects the condensation pathway and how to predict the amyloid aggre-

gation within condensates [Vernon and Forman-Kay, 2019, Vendruscolo and Fuxreiter, 2022].

One of the methods to overcome the difficulties in amyloid prediction was introduced by

Koliński et al. [2021]. They have tested a multiscale procedure using the CABS-dock algorithm

to model a highly amyloidogenic peptide arising from insulin A-chain [Kurcinski et al., 2019].

The first step of this procedure is to make multiple docking simulations using the CABS-dock

algorithm. Then the models were recreated to atom representations, improved by molecular dy-

namics simulations, and the best models were assembled into fibrils. The obtained fibril models

have been compared with experimental data from atomic force microscopy (AFM) proving that

the multiscale modeling procedure is highly accurate in the prediction of amyloid protofilaments

and fibrils [Koliński et al., 2021].
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2 The aims of the dissertation

Since many aspects of amyloids are still unknown, the goal of this thesis was to conduct var-

ious bioinformatic and experimental analyses of amyloid proteins including functional amyloids

CsgA and CsgB:

• experimental testing amyloidogenicity of peptides that were accurately predicted and in-

correctly recognized by the software AmyloGram. The aim of this approach was to validate

the predictor and receive a verified set of peptides for improving this algorithm in the fu-

ture. Moreover, learning these experimental methods based on different amyloid peptides

was necessary for further research on much longer functional amyloids, CsgA and CsgB.

• detailed bioinformatic research of CsgA and CsgB sequences showing a unique arrange-

ment of five repeating regions. The purpose of this study was to assess how similar the

duplicated units are to one another and to identify a common consensus for them.

• extensive phylogenetic analyses of CsgA and CsgB homologs. The goal of these investiga-

tions was to reconstruct the evolutionary history of these proteins and verify if the similar

structural organization evolved convergently or was inherited from a common ancestor.

• studying the role of repeating regions of CsgA and CsgB in the aggregation process. The

target of this investigation was to purify selected CsgA and CsgB variants with deleted

regions and determine the influence of these regions on the rate of aggregation.

• comparison of functional and non-functional amyloids. The objective of these analyses

was to find specific sequence features that can distinguish these types of amyloids and can

be used in their prediction based on a machine learning model.

• building a database of amyloid interactions. The intention of this subject was to gather

information about the interaction of various amyloid proteins including functional ones,

e.g. CsgA and CsgB, as well as designed definitions and descriptors of these interactions.

The thesis was divided into several parts relevant to these subjects including in each of them

the section of Research objectives, Material and Methods as well as Results. The subjects were

jointly discussed in the section Discussion at the end.
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3 Amyloid peptide validation

3.1 Research objectives

The aim of this research objective was to evaluate experimentally the performance of Amylo-

Gram, a software for amyloidogenicity prediction. To achieve that, we have selected 10 amyloids

correctly predicted by this algorithm and 24 peptides that were incorrectly predicted accord-

ing to initial assumptions. Then, the peptides were experimentally verified using Thioflavin T

assay and Atomic Force Microscopy. The goal of this research was also to learn these experi-

mental techniques and develop appropriate protocols on the base of various amyloid peptides.

It was necessary for further studies of much longer functional amyloid CsgA and CsgB proteins

described in the next sections.

3.2 Materials and Methods

3.2.1 Peptide selection

In order to validate AmyloGram 1.0 prediction algorithm, we have chosen 3 sets of data

(Fig. 4). The first set consisted of 10 peptides, which were predicted in accordance with the

annotations in the AmyLoad database. The other two sets included 12 false positive and 12

false negative peptides. To select these peptides, we downloaded all hexapeptide sequences from

AmyLoad. After splitting them into two separate sets, amyloidogenic and non-amyloidogenic,

we cross-checked our sets to eliminate sequences that occurred in both groups. The peptide

sequences were encoded using the reduced alphabet with 6 amino acid groups (Tab. 3). The

encoding resulted in the occurrence of identical sequences, which were removed from the final set.

Hexapeptides that were also present in AmylHex database [Fernandez-Escamilla et al., 2004]

were removed because AmylHex includes experimentally validated peptides that were used to

check if AmyloGram is working correctly after the learning phase. The amyloidogenicity of the

selected peptides were predicted by AmyloGram, which provided probability values. Based on

these values and AmyLoad annotations, we selected correctly (Tab. 4) and incorrectly (Tab.

5), that were predicted opposite to the annotations in the AmyLoad database.
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AmyLoad

peptide sequences 
downloaded

amyloid sequences non-amyloid sequences

10 true-positive peptides 12 false-positive 
peptides

12 false-negative 
peptides

removal of sequences that are repeated in both sets

encoding peptide sequences into corresponding groups 
using reduced alphabet in AmyloGram

removal of duplicates

calculation of prediction values in AmyloGram

Figure 4: The scheme of peptide selection for AmyloGram improvement.
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Table 4: Reference peptides that were correctly predicted by AmyloGram algo-
rithm according to annotations in AmyLoad database.

Peptide AmyLoad AmyloGram Probability

1 SFLIFL amyloid amyloid 0.9157

2 ISFLIF amyloid amyloid 0.9132

3 YLLYYT amyloid amyloid 0.9124

4 LVFYQQ amyloid amyloid 0.8876

5 YTVIIE amyloid amyloid 0.9176

6 KPAESD non-amyloid non-amyloid 0.0005

7 FNPQGG non-amyloid non-amyloid 0.0023

8 NPQGGY non-amyloid non-amyloid 0.0023

9 TKPAES non-amyloid non-amyloid 0.0024

10 SWVIIE non-amyloid non-amyloid 0.6161

The selected peptides for experimental verification were synthesized de novo by an external

company. To be certain that they do not aggregate during this process, we dissolved them using

NaOH because an increase in alkalinity disturbs the tertiary structure of proteins. After few

seconds, we neutralized pH and measured fluorescence intensity using ThT assay.
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Table 5: Peptides that were incorrectly predicted by AmyloGram algorithm ac-
cording to annotations in AmyLoad database.

No. Peptide AmyLoad AmyloGram Probability

1 NNSGPN amyloid non-amyloid 0.0138

2 QANKHI amyloid non-amyloid 0.0434

3 QEMRHF amyloid non-amyloid 0.0519

4 MMHFGN amyloid non-amyloid 0.0528

5 ALEEYT amyloid non-amyloid 0.0687

6 HGFNQQ amyloid non-amyloid 0.0790

7 ASSSNY amyloid non-amyloid 0.0880

8 HSSNNF amyloid non-amyloid 0.0880

9 MIENIQ amyloid non-amyloid 0.0984

10 NIFNIT amyloid non-amyloid 0.1244

11 MIHFGN amyloid non-amyloid 0.1375

12 HLFNLT amyloid non-amyloid 0.1441

13 STVVIE non-amyloid amyloid 0.8627

14 ELNIYQ non-amyloid amyloid 0.8216

15 FTFIQF non-amyloid amyloid 0.8093

16 WSFYLL non-amyloid amyloid 0.7741

17 YYTEFT non-amyloid amyloid 0.7184

18 NTIFVQ non-amyloid amyloid 0.7013

19 DETVIV non-amyloid amyloid 0.6726

20 FTPTEK non-amyloid amyloid 0.6655

21 FQKQQK non-amyloid amyloid 0.6655

22 FGELFE non-amyloid amyloid 0.6547

23 SHVIIE non-amyloid amyloid 0.6449

24 STTIIE non-amyloid amyloid 0.6366

3.2.2 Thioflavin T (ThT) assay

ThT stock (Sigma, product no. T3516) was dissolved in MilliQ water and filtered through

0.22 µm filter to make the stock of 10 µM solutions. The 250 µl of prepared ThT solution

was added to 50 ml of 50 mM phosphate buffer with pH = 7. The final concentration of

the ThT buffer was approximately 50 mM. For the measurement of ThT fluorescence in the

presence of amyloid fibrils, 90 µl of ThT buffer was mixed with 10 µl of the protein solution.
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The protein samples were measured just after the preparation and each day for 14 days in

the case of reference peptides and 4 days in the case of doubtful peptides. Depending on the

primary results, we measured them many times. The ThT fluorescence emission spectrum was

measured at room temperature at 480 nm using the 440 nm excitation wavelength on Cary

Eclipse Fluorescence Spectrophotometer (Agilent Technologies). Each sample was measured at

least 3 times. Intensity curves were normalized using the protein median value and the standard

deviation for the peak at 480 nm. For the ThT control, we used 90 µl of ThT buffer mixed with

10 µl MilliQ water. We assumed that the peptide is amyloidogenic if its fluorescence intensity

is twice that of the ThT control.

3.2.3 Atomic Force Microscopy (AFM)

For AFM experiments, the peptide electric charge was checked using ProtParam [Walker,

2005]. Mica, the surface on which the samples are investigated, is charged negatively. In order

to increase the adhesion to the mica, some acid has been added to the negatively charged

peptides. It should change its electric charge to positive and improve the interaction with the

surface. Peptide solution with the concentration of 20 µl was pipetted onto the freshly etched

mica surface and incubated for 10 min, rinsed with 1 ml of MilliQ water, and dried under

gentle airflow. AFM images were recorded in the Tapping-in-Air mode at the drive frequency

of approximately 300 kHz using a Dimension Icon (Bruker) scanning probe microscope system.

Aluminum reflective coated tips Tap300Al-G (BudgetSensors) were used as a probe [Šneideris

et al., 2015]. Although AFM is the most time-consuming procedure, it is the most reliable in

concluding whether a peptide forms amyloid fibrils or not.

3.3 Results

Part of the results obtained under this dissertation were published in Szulc et al. [2021].

3.3.1 ThT assay

First, ThT assay was performed on 10 reference peptides to validate the proper functioning

of AmyloGram 1.0. Five of them were amyloidogenic and five non-amyloidogenic according to
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their annotations in the AmyLoad database [Wozniak and Kotulska, 2015]. The fluorescence

spectra intensity of 10 peptides in the respective days of incubation are presented in Fig. 5.
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Figure 5: Aggregation kinetics of reference amyloid and non-amyloid peptides in the pres-

ence of ThT dye in time. Day 0 represents the measurement right after the sample preparation.

Samples were incubated in 21◦C and 60◦C. Plots were divided according to peptide amyloidogenicity

annotations given by AmyLoad and temperature.

Values for amyloids were mostly higher than for the ThT control, whereas those for non-

amyloids were very close or below the control values. Generally, the fluorescence intensity

decreased with time. The temperature has no important influence on fluorescence. The highest

intensity indicating effective binding to ThT was shown by peptide LVFYQQ. Interestingly,

among the non-amyloid peptides, SWVIIE revealed a very high binding property to ThT. It

can be considered a false positive amyloid because it does not form fibrils but only oligomers

when studied under AFM. The oligomerization leads to higher binding of ThT dye.
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The results for 24 incorrectly predicted peptides are presented in Fig. 6. Peptide samples

were measured right after preparation and for 4 consecutive days. Several peptides showed the

highest fluorescence values just after preparation and next the values decreased.
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Figure 6: Aggregation kinetics of incorrectly predicted peptides in the presence of ThT

dye in time. Plots were divided according to peptide amyloidogenicity annotations given by Amy-

Load.

We have found 4 peptides annotated in the AmyLoad database as non-amyloids and pre-

dicted by AmyloGram as amyloids, which showed very high fluorescence values. Three amyloids

from the AmyLoad database and predicted by AmyloGram as non-amyloids revealed also very

high values (Fig. 7).
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Figure 7: Fluorescence intensity of 24 peptides incorrectly predicted by AmyloGram.

Plots were divided according to peptide amyloidogenicity annotations given by the AmyLoad database

and the result of the ThT assay. The red line indicates ThT control fluorescence intensity. The light

red area indicates values that exclude ThT binding to the peptide. AmyloGram prediction is opposite

to that of AmyLoad.

Due to very high-intensity values for some peptides in the presented plots (Fig. 6), the

values for other peptides are not easy to compare with the control. Therefore, we demonstrated

fluorescence intensities for each peptide separately and summarized the results in Fig. 7. The

study indicates that six peptides predicted as amyloids by AmyloGram did not bind ThT in

agreement with the annotation in AmyLoad as non-amyloid. On the other hand, ten peptides

predicted as non-amyloids by AmyloGram did not show the amyloiodgenicity in the ThT assay

in contrast to the AmyLoad annotation. Five peptides bounded ThT were also computationally

predicted as amyloids, whereas three other peptides also interacting with ThT were not predicted

as amyloids by AmyloGram in opposition to AmyLoad annotations.
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3.3.2 AFM

The results of Atomic Force Microscopy for reference peptides are presented in Fig. 8-14.

All typical amyloid peptides should form long, thin amyloid fibrils such as that in Fig. 8 and

9. Non-amyloid peptides should not form any aggregates, as shown for example in Fig. 10.

The exception is peptide SWVIIE, which formed oligomeric aggregates (Fig. 11) binding also

to ThT.
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ISFLIF Day 1 Day 7

Day 7 Day 1, 60ºC

Day 7, 60ºC

Figure 8: ISFLIF peptide under AFM. AmyLoad: amyloid, AmyloGram: amyloid.
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LVFYQQ Day 7 Day 7

Day 14 Day 1, 60ºC

Day 7, 60ºC Day 14, 60ºC

Figure 9: LVFYQQ peptide under AFM. AmyLoad: amyloid, AmyloGram: amyloid.
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NPQGGY Day 7

Figure 10: NPQGGY peptide under AFM. AmyLoad: non-amyloid, AmyloGram: non-amyloid.
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SWVIEE Day 7 Day 7 Day 14

Day 14 Day 1, 60ºC Day 1, 60ºC

Day 7, 60ºC Day 14, 60ºC

Figure 11: SWVIEE peptide under AFM. AmyLoad: non-amyloid, AmyloGram: non-amyloid.
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SFLIFL Day 1 Day 14

Day 7, 60ºC

Figure 12: SFLIFL peptide under AFM. AmyLoad: amyloid, AmyloGram: amyloid.
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YLLYYT Day 14

Figure 13: YLLYYT peptide under AFM. AmyLoad: amyloid, AmyloGram: amyloid.
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YTVIIE Day 1 Day 14

Day 14

Figure 14: YTVIIE peptide under AFM. AmyLoad: amyloid, AmyloGram: amyloid.

3.3.3 Validation of results

The final results from the experimental validation of AmyloGram are collected in Tab. 6 and

7. In the case of reference peptides, we can conclude that AmyloGram made correct predictions

(Tab. 6). All predictions were confirmed in most experiments.
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Table 6: Validation of amyloid propensities of reference dataset by various meth-
ods.

Sequence AmyLoad ThT AFM AmyloGram

SFLIFL amyloid amyloid non-amyloid amyloid
ISFLIF amyloid amyloid amyloid amyloid
YLLYYT amyloid amyloid non-amyloid amyloid
LVFYQQ amyloid amyloid amyloid amyloid
YTVIIE amyloid amyloid non-amyloid amyloid
KPAESD non-amyloid non-amyloid - non-amyloid
FNPQGG non-amyloid non-amyloid - non-amyloid
NPQGGY non-amyloid non-amyloid non-amyloid non-amyloid
TKPAES non-amyloid non-amyloid non-amyloid non-amyloid
SWVIIE non-amyloid amyloid non-amyloid non-amyloid

At least one experimental method confirmed the computational results. SWVIIE peptide

predicted as non-amyloid and showing a high-intensity peak in ThT assay did not form fibrils

under AFM. Unfortunately, in the case of SFLIFL, YLLYYT, YTVIIE peptides (Fig. 12, 13 and

14), we did not find fibrils on mica using AFM. It indicates that this method does not always

provide clear findings in the case of amyloids. In the case of amyloids, which were predicted by

AmyloGram contrary to the annotations in the AmyLoad database, ThT assay confirmed the

predictions in 16 out of 24. The results of the peptide verification can be used to modify the

learning stage and initial peptide classification of the updated version of AmyloGram and the

software for the prediction of functional amyloids to which belong CsgA and CsgB.
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Table 7: Validation of amyloid propensities of incorrectly predicted peptides by
various methods.

Sequence AmyLoad ThT AmyloGram

NNSGPN amyloid non-amyloid non-amyloid
QANKHI amyloid non-amyloid non-amyloid
QEMRHF amyloid non-amyloid non-amyloid
MMHFGN amyloid non-amyloid non-amyloid
ALEEYT amyloid non-amyloid non-amyloid
HGFNQQ amyloid non-amyloid non-amyloid
ASSSNY amyloid non-amyloid non-amyloid
HSSNNF amyloid non-amyloid non-amyloid
MIENIQ amyloid non-amyloid non-amyloid
NIFNIT amyloid amyloid non-amyloid
MIHFGN amyloid non-amyloid non-amyloid
HLFNLT amyloid amyloid non-amyloid
STVVIE non-amyloid amyloid amyloid
ELNIYQ non-amyloid non-amyloid amyloid
FTFIQF non-amyloid amyloid amyloid
WSFYLL non-amyloid amyloid amyloid
YYTEFT non-amyloid non-amyloid amyloid
NTIFVQ non-amyloid amyloid amyloid
DETVIV non-amyloid non-amyloid amyloid
FTPTEK non-amyloid non-amyloid amyloid
FQKQQK non-amyloid non-amyloid amyloid
FGELFE non-amyloid non-amyloid amyloid
SHVIIE non-amyloid amyloid amyloid
STTIIE non-amyloid amyloid amyloid
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4 Computational analyses of CsgA and CsgB sequences

4.1 Research objective

Sequences of CsgA and CsgB show an interesting organization, characterized by the presence

of peculiar five repeating units. Therefore, we decided to investigate in detail the sequence

features and organization of CsgA and CsgB proteins. We planned to evaluate the similarity

between the duplicated regions and find common consensus sequences for them. To achieve that,

we conducted a relevant bioinformatic analysis based on motif finding and aligning sequences

(Fig. 15).

E. coli

CsgA
and

CsgB

graphical
alignment
in Dotlet

sequence
alignment
in glsearch

motif
finding

in MEME

secondary
structure
prediction
in JPred

dotplot

aligned
sequences

sequence
motifs

secondary
structure

Figure 15: Flowchart of computational analyses of CsgA and CsgB sequences.

4.2 Materials and Methods

4.2.1 Motif finding

Motifs in CsgA and CsgB sequences were searched using MEME (Multiple Expectation

maximizations for Motif Elicitation) Suite 5.5.1 [Bailey et al., 2015] using default settings. This
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algorithm is dedicated for ungapped motif search and is based on several methods, which in-

clude the expectation-maximization (EM) algorithm, EM-based heuristics, maximum likelihood

ratio-based heuristics as well as multi-start and greedy search [Bailey and Elkan, 1994]. It ap-

plies statistical modeling to automatically choose the best width, number of occurrences, and

characteristics for each motif. Using the EM, MEME searches for motifs in provided sequences

iteratively modifying the search parameters and found tentative motifs.

4.2.2 Aligning sequences

Graphical pairwise alignments of dotplot type for CsgA and CsgB sequences were performed

with Dotlet at the website https://dotlet.vital-it.ch/ assuming the window size of 13 and the

scoring matrix Blosum 62. The dot plot is a graphical method for comparing two sequences

and identifying regions of close similarity. One sequence is presented on the x-axis and another

on the y-axis of the plot. When the residues of the compared sequences match at the same

position on the plot, a dot is drawn at the corresponding location. If there are many adjacent

dots, they arrange into lines in the plot. In the study, we aligned CsgA or CsgB sequence with

itself to demonstrate a potential similarity between the duplicated regions.

Alignments between new potentially duplicated regions and those already determined were

conducted using the optimal global:local affine Needleman-Wunsch algorithm (glsearch) from

FASTA package version 36.3.8g [Pearson et al., 1997]. This algorithm is more sensitive and

provides the statistical significance of alignments. We assumed the number of shuffle 1,000,000

and tested all scoring matrices. Finally, we selected the alignments that showed an E-value

smaller than 0.05 and the lowest for the set of matrices.

4.2.3 Secondary structure prediction

The secondary structure was predicted using JPred [Drozdetskiy et al., 2015] via JalView

[Waterhouse et al., 2009]. This software uses the Jnet algorithm based on a neural network

to make more accurate predictions. In addition to the protein secondary structure JPred also

makes predictions on Solvent Accessibility and Coiled-coil regions using Lupas method. For

the sequence for which the prediction is made, homologs are searched in UniProt database

[UniProt Consortium, 2018] and next a sequence profile is constructed for the prediction.
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4.3 Results

4.3.1 Analysis of CsgA and CsgB sequence organization

Both CsgA and CsgB sequences contain five non-identical repeating units participating in

amyloid fiber formation [Barnhart and Chapman, 2006, Dueholm et al., 2012, Evans and Chap-

man, 2014, Chapman et al., 2002]. They were recognized by general sequence similarity and

the identification of only identical residues. The motifs were not statistically evaluated, either.

This approach could be subjective, so we decided to apply a more objective motif search using

a MEME algorithm [Bailey et al., 2015] dedicated to this purpose.

The analysis revealed the presence of a common motif with E-value 2.7e-047, which is re-

peated five times in CsgA sequence (Fig. 16). The individual motifs are separated by one or

two amino acid residues and are also significant with p-value ≤ 3.17e-17. The consensus motif

is 21 residues in length and is characterized by at least nine conserved sites. In the middle,

there are three glycine residues, whereas on both sites there are polar asparagine, glutamine,

and serine. In the right part of the consensus, there is also a conserved alanine. The 5th, 7th,

and 18th positions in the motif are also conserved and occupied by only hydrophobic amino

acids.

In the case of the CsgB sequence, the MEME algorithm also discovered a motif with E-value

4.2e-027 repeating five times but with a length of 22 residues (Fig. 17). The individual motifs

are adjacent and separated by no residue. They are significant with p-value ≤ 2.19e-13. The

consensus motif includes at least seven conserved sites. In the middle, there is also a dominant

glycine but in contrast to CsgA only one. To the left of it is conserved polar glutamine and

to the right polar serine, asparagine and glutamine. Only hydrophobic residues are present in

the 8th, 17th and 19th positions in the motif. It can add that two regions (2 and 5) start

with glycine and two others (1 and 3) end with this amino acid, which is visualized also in the

consensus motif.

The sequence consensus of CsgA and CsgB motifs share common features. Both have the

central glycine surrounded by polar and hydrophobic residues, occurring alternatively. They also

contain two glutamine residues in similar positions, as well as conserved asparagine and alanine

separated by only one less conserved site. It may indicate a common structural organization



4.3 Results 57

and common evolutionary history of these regions. The same analysis aimed to find common

motifs between CsgA and CsgB sequences but did not produce statistically significant results.
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Start p-value A motif site with the 10 flanking letters on either side
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Figure 16: Motifs discovered by MEME algorithm in CsgA sequence. The location of

individual motifs and the logo sequence of the consensus motif were presented.
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Figure 17: Motifs discovered by MEME algorithm in CsgB sequence. The location of

individual motifs and the logo sequence of the consensus motif were presented.
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4.3.2 Searching for a new duplicated region in CsgA and CsgB sequences

To visualize the similarity between the five repeating regions, we aligned separately the same

sequence of CsgA or CsgB with itself (Fig. 18). In this case, we should expect a symmetric plot

with four series of short lines above and under the diagonal. These lines should correspond to

matches between the appropriate duplicated regions arranged in columns and rows of the plot.

The number of these lines should decrease from the diagonal to the vertices of the square plot.

In fact, such a pattern can be recognized for the CsgA sequence and also for CsgB, but not all

matching lines are clearly visible due to poor sequence similarity between some regions (Fig.

18). Interestingly, after the detailed investigation of the CsgA alignment, we identified some

additional lines that suggest a similarity between a fragment located before the determined

regions and the known duplicates. These lines are indicated by arrows in Fig. 18 and suggest

the presence of an additional duplicated region. In fact, a potential new region includes stretches

of glycines and polar residues present in the determined motifs. Thus, we performed a more

sensitive analysis to verify the similarity between the regions.

CsgAExpectation CsgB

Figure 18: Dotplot (graphical pairwise alignment) of CsgA and CsgB sequences, as well

as the expected result for five duplicated regions. Red arrows indicate a similarity between a

sequence located before the determined regions and some already approved regions.

In agreement with the dot plot results, we found a statistically significant similarity between

the sequence named N1 located between 17 and 31 residues (SALAGVVPQYGGGGN) and

the five known repeating regions. Searches of N2 sequence with the location 32-40 (HGGGG

NNSG) occurred also statistically significant. E-value for the produced alignments was from



4.3 Results 59

0.038 to 0.00001 and identity between 30.8% to 83.3% (Tab. 8).

Table 8: Results of glsearch between CsgA N1 (17-31) and N2 (32-40) as well as
CsgB N (15-41) sequences against the five repeating regions (R1-R5). Statistical
significance (E-value) and percent (%) of identity, the used scoring matrices were included.

Protein Query Subject % identity E-value Matrix

CsgA N1 R1 53.9 0.00003 MD20

CsgA N1 R2 58.3 0.0005 MD20

CsgA N1 R3 30.8 0.034 OPT5

CsgA N1 R4 46.2 0.00001 VT80

CsgA N1 R5 40.0 0.0068 BL50

CsgA N2 R1 71.4 0.000041 MD10

CsgA N2 R2 83.3 0.015 VT10

CsgA N2 R3 33.3 0.0089 MD40

CsgA N2 R4 44.4 0.0047 BL80

CsgA N2 R5 44.4 0.038 BL80

CsgB N R3 30.0 0.001 P120

In the alignments, we can recognize identical matches between asparagine, glutamine, glycine,

histidine, leucine, serine, and tyrosine (Fig. 19). In the case of CsgB we found only one signifi-

cant match (E-value = 0.001, 30% identity) between the sequence AGYDLANSEYNFAVNEL-

SKS (placed between 15 and 41 residue) and the region R3. These sequences shared homologous

positions of tyrosine, leucine, alanine, asparagine and serine (Fig. 19).

These findings suggest that initially, at least six regions could exist in the curli proteins. The

five stayed more conserved and the one degenerated. It is not inconceivable that the amyloid

fibrils were created by the six stretches of β-sheet in some ancestral forms.
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Figure 19: Statistically significant alignments found for N1 (17-31) and N2 (32-40) CsgA

sequences, as well as N (15-41) CsgB sequence with the five known repeating regions

(R1-R5). The alignments were produced in glsearch from FASTA package.

4.3.3 Prediction of the secondary structure of CsgA and CsgB

Using JPred, we predicted the secondary structure in CsgA and CsgB sequences (Fig. 20).

The applied algorithms made concordant predictions. The analyses showed that each of the

repeated regions consists of two β-strand, which are interrupted in the middle of the given

region. In most cases, the second strand in the regions ends with their boundaries, whereas the

first strand begins several residues later. Interestingly, in the fragment before the region R1

and between a signal peptide, β-strands were also predicted. This fragment includes sequences
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that showed similarity to already identified duplicated regions and can represent an additional

duplication. In the case of the CsgB protein, the sequence of the signal peptide was predicted

as α-helix, whereas in CsgA the prediction is ambiguous. One part of it can form an α-helix

and the other β-strand.

Signal peptide

Signal peptide

R1

R1

R2

R2

R3

R3

R4

R4

R5

R5

CsgA

CsgB

Figure 20: Secondary prediction for CsgA and CsgB sequences. Lupas_21, Lupas_14 and

Lupas_28 are coiled-coil predictions for the sequence; Jnet Burial is the prediction of solvent ac-

cessibility; JNetPRED is the consensus prediction; JNetCONF is the confidence estimate for the

prediction; JNetHMM is the HMM profile based prediction; JNETPSSM is the PSSM based predic-

tion; JNETJURY - ’*’ in this annotation indicates that the JNETJURY was invoked to rationalize

significantly different primary predictions. Helices are marked as red tubes and sheets as dark green

arrows.
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5 Phylogenetic analyses of CsgA and CsgB homologs

5.1 Research objectives

CsgA and CsgB sequences from E. coli have the same length, and demonstrate a similar

organization, consisting of signal peptide and five repeating regions. In spatial structure, they

are also very similar. Moreover, they interact with each other, and CsgB is a specific nucleator

protein of the extracellular self-assembly of CsgA [Dunbar et al., 2019]. These would suggest that

these proteins are phylogenetically related and should share a common ancestry. However, their

sequence similarity is quite weak, so their evolution should have been more complex. It would

be also possible that the organization and structure of these proteins evolved independently

and convergently. Therefore, we collected distant homologs to these proteins and conducted

extensive phylogenetic analyses to reconstruct their evolutionary history.

5.2 Materials and methods

5.2.1 Alignment of CsgA and CsgB sequences

Global (using the Needleman-Wunsch algorithm) and local (using the Smith-Waterman algo-

rithm) pairwise alignments of CsgA (P28307) and CsgB (P0ABK7) sequences from Escherichia

coli were conducted with needle and water applications from EMBOSS package [Rice et al.,

2000] at EMBL-EBI web site, respectively (https://www.ebi.ac.uk/Tools/psa/) (Fig. 21). The

parameters of the alignments were matrix: BLOSUM62, gap penalty: 10.0 and extend penalty:

0.5.
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E. coli
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sequence
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sequence
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sequences
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Figure 21: Flowchart of alignment of CsgA and CsgB sequences.



5.2 Materials and methods 63

E. coli

CsgB

E. coli

CsgA

selection
of unique

sequences

domain search
in RPS-BLAST

sequence
clustering
in CLANS

sequence
clustering
in CLANS

sequence
alignment
in MAFFT

sequence
alignment
in MAFFT

HMMs profile
construction
in HMMER

HMMs profile
construction
in HMMER

alignment and distance
calculation in PRC
and pHMM-Tree

phylogenetic
tree construction

in PAUP

signal peptide
prediction
in SignalP

removing short
sequences based

on distances
from ClustalW

homology
search

in PSI-BLAST

homology
search

in PSI-BLAST

unique
homologs

homologs
with curlin
domains

sequence
clusters

sequence
clusters

aligned
sequences

aligned
sequences

HMMs
profiles
HMMs
profiles

distance
matrix

phylogenetic
trees

signal
peptides

sequence
alignment
in MAFFT

removing
positions
with gaps
in trimAl

phylogenetic
tree construction

in IQ-TREE

selection
of 15 closely

related clusters

aligned
sequences

corrected
alignment

phylogenetic
tree

selected
sequences

HMMs profile
construction
in HMMER

HMMs profile
construction
in HMMER

alignment and distance
calculation in PRC
and pHMM-Tree

phylogenetic
tree construction

in PAUP

selection
of duplicated

regions
in JalView

pairwise distance
calculation
in ClustalW

sequence
logos construction

in Skylign

selected
regions

HMMs
profiles
HMMs
profiles

distance
matrix

pairwise
distances

sequence
logos

phylogenetic
trees

selection of 3 closely
related clusters

for CsgA and CsgB

removing
positions
with gaps
in trimAl

phylogenetic
tree construction

in IQ-TREE

aligned
sequences

corrected
alignment

phylogenetic
tree

sequence
alignment
in MAFFT

selected
sequences

refined set
of sequences

homologous
sequences

homologous
sequences

Figure 22: Flowchart of phylogenetic and analyses of CsgA and CsgB sequences.
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5.2.2 Searching for homologs

In order to collect a comprehensive, non-redundant and reliable set of homologs to CsgA and

CsgB proteins, we conducted extensive bioinformatic analyses, which consisted of many steps

(Fig. 22). At first, we searched, separately for the CsgA and CsgB sequences, the NCBI non-

redundant amino acid sequence database, consisting of 514,690,806 records, using PSI-BLAST

2.13.0+ [Altschul et al., 1997]. We assumed the word size = 2, E-value < 0.001 for saving

hits, and E-value < 0.0001 for the inclusion of sequences in the construction of the position-

specific scoring matrix (PSSM). We applied three iterations in these searches. The unique hits

from these two searches were selected to one set of 15,705 sequences, from which two with the

annotation “synthetic” were removed.

PSI-BLAST, i.e. Position-Specific Iterated Basic Local Alignment Search Tool, is used to

detect distant relationships between proteins. After finding homologous sequences to a query in

the first step, it calculates a profile or a position-specific score matrix (PSSM) from the multiple

alignment of the homologs. The PSSM captures the conservation pattern in the alignment

and stores it as a matrix of scores for each position in this alignment. Then, this profile is

used to search again the database to find sequences that match the pattern described by the

matrix. The newly selected sequences from this second round of the search are again added to

the alignment and the profile is refined. This process is iteratively run until a sufficient number

of homologs are collected or no new sequences can be detected above the assumed threshold.

Thereby, PSI-BLAST is capable of detecting more distant than a single search done in BLASTP.

5.2.3 Identification of conserved domains

We used RPS-BLAST with Conserved Domain Database 3.20 [Marchler-Bauer et al., 2013]

and each of the found sequences as a query to identify in them three domains that are char-

acteristic of CsgA and CsgB proteins: CDD:182211, PRK10051, csgA, major curlin subunit

CsgA; CDD:182242, PRK10101, csgB, curlin minor subunit CsgB; Provisional; CDD:429248,

pfam07012, CurlinS_rpt, Curlin associated repeat. We applied E-value < 0.01 in these searches.

Due to this approach, we identified 15,180 sequences that contained at least one of these do-

mains.

RPS-BLAST, i.e. Reverse Position-Specific BLAST, is a variant of the BLAST that searches
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a query sequence against a pre-calculated position-specific scoring matrix (PSSM) derived from

a set of related protein sequences. This allows for more sensitive and specific detection of

distant homologs and conserved domains specific for a protein family. Using RPS-BLAST,

we can search the Conserved Domain Database (CDD), which is a collection of pre-calculated

PSSMs for conserved protein domains, motifs, and functional sites.

5.2.4 Clustering and aligning of sequences

The obtained set of sequences was subjected to a clustering analysis made in CLANS (Cluster

Analysis of Sequences) software [Frickey and Lupas, 2004], which visualizes BLAST pairwise

sequence similarities in either two-dimensional or three-dimensional space. Analyzed sequences

are represented in the graph by vertices, which are connected by edges reflecting attractive

forces proportional to the negative logarithm of the P-value. In these BLASTP searches, we

used the word size 2 and E-value threshold 1. To automatically detect clusters of sequences, we

applied the network approach setting 2 as the minimum number of sequences per cluster. This

method assumes that each sequence forms a node of the input layer for a network. These nodes

emit the number of the cluster to which the sequence belongs.

The clustering resulted in 40 groups. Sequences in each cluster were aligned in MAFFT

7.505 [Katoh and Standley, 2013] using the slow and accurate algorithm E-INS-i with 1,000

cycles of iterative refinement except for the sequences of the most numerous cluster containing

as many as 5200 sequences, which were aligned by a much faster algorithm FFT-NS-I assuming

also 1,000 cycles. For each set of the aligned sequences, we calculated pairwise differences using

ClustalW 2.1 [Thompson et al., 1994] and removed shorter sequences that were identical in the

aligned positions with longer ones. Thereby, the final set was reduced to 13,652 sequences and

was subjected to further studies. We searched in these sequences a potential signal peptide

using SignalP 6.0 [Teufel et al., 2022] assuming a slow model mode.

The sequences were also again clustered using the network algorithm in CLANS, which

produced 17 groups. The most abundant cluster including 9642 sequences was subjected to

additional separation into a further 17 clusters. Thus, the total number of clusters was 33. The

sequences in each cluster were once more aligned using the algorithm E-INS-i with 1,000 cycles

in MAFFT.
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5.2.5 Analyses of profile Hidden Markov models

For the results from multiple alignments of individual clusters, we constructed profile hid-

den Markov models (HMMs) using HMMER 3.3.2 package [Eddy, 1998, 2011]. The profiles

are probabilistic models that capture position-specific information about conservation of each

residue in each column of multiple sequence alignment. In other words, the profiles transform

the alignment into a position-specific scoring system.

Distance matrices between the produced profiles were generated with software pHMM-Tree

[Huo et al., 2017] after aligning them with the Profile Comparer PRC [Madera, 2008]. To recon-

struct the evolutionary relationships between the profiles, phylogenetic trees were created based

on the matrices in PAUP* 4.0a [Swofford, 1998]. We applied three algorithms: minimum evo-

lution, balanced minimum evolution and Fitch-Margoliash criterion, i.e., weighted least squares

with power 2. In each tree construction, starting trees were obtained via random stepwise addi-

tion with 10 replicates followed by the branch-swapping algorithm tree-bisection-reconnection

(TBR) with a reconnection limit of 8. Using these three trees, a majority rule consensus was

produced.

5.2.6 Phylogenetic analyses

Based on the consensus tree of HMM profiles, 6097 sequences from the 15 most closely related

clusters including those grouping CsgA and CsgB proteins were selected. After the elimination

of fragmentary sequences, the set including 5764 sequences was used for further investigations.

The sequences were aligned with the algorithm E-INS-i with 1,000 cycles in MAFFT and all

positions in the alignment with gaps in at least 50% of sequences were removed using trimAl 1.4

[Capella-Gutiérrez et al., 2009]. This procedure provided the alignment with 145 most reliable

sites.

Based on this alignment, we inferred a maximum likelihood phylogenetic tree with IQ-TREE

2.2.0 [Minh et al., 2020] assuming EXS_EHO+R10 as the best-fit substitution model as found

according to BIC by ModelFinder [Kalyaanamoorthy et al., 2017] associated with this software.

In the tree inferring, we used the more thorough and slower NNI (nearest-neighbor interchange)

branch-swapping algorithm, which takes into account all possible NNIs instead of only similar

to the previous ones. Moreover, we assumed 1000 initial parsimony trees and 100 top initial
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parsimony trees to optimize with the NNI search to initialize the candidate set. To assess the

significance of clades, we applied the Shimodara-Hasegawa-like approximate likelihood ratio test

(SH-aLRT) with 10,000 replicates.

Moreover, to study in more detail the evolution of close homologs to CsgA and CsgB, we

selected sequences from the CLANS clusters that comprised the reference sequences of these

proteins from E. coli. Each of these clusters was grouped together with two other clusters

according to the tree based on HMM profiles. Sequences from these clusters were also chosen

to the sequences from the reference clusters. The set of close homologs to CsgA consisted

of 1083 sequences, whereas that of close homologs to CsgB included 1517 sequences. The

sequences were aligned with E-INS-i with 1,000 cycles in MAFFT and 151 reliable sites in each

of these multiple alignments were selected as described previously using trimAl. Phylogenetic

trees were constructed using the same methodology mentioned above assuming LG4M+R5 and

Q.plant+R6 substitution models for the CsgA and CsgB sets, respectively.

5.2.7 Analyses of individual duplicated regions

From the multiple sequence alignments, we extracted five regions as identified by MEME

motif searches in section 4.3.1. For these regions, we constructed HMM profiles and constructed

phylogenetic trees as described previously, but instead of a heuristic search, we applied an ex-

haustive search. Based on these profiles, logos were generated with the Skylign tool [Wheeler

et al., 2014], assuming information content: All. Pairwise differences (p-distance, i.e. fraction

of different positions) between sequences for the individual regions were calculated in ClustalW.

Differences between these distances were compared in the non-parametric unpaired Wilcoxon

test between CsgA and CsgB regions, whereas in the comparison of regions for the given set

of homologs CsgA or CsgB, we used the paired version of this test. The Spearman correla-

tion coefficient was also calculated between the distances in all combinations of these regions.

The Benjamini-Hochberg method was applied for p-value correction to control the false discov-

ery rate. P-values smaller than 0.05 were considered significant. The statistical analysis was

performed in R package [RStudio Team, 2020].
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5.2.8 Other software used

Sequence alignments were inspected and studied in JalView [Waterhouse et al., 2009]. Phy-

logenetic trees were inspected and edited in MEGA 11 [Tamura et al., 2021]. FigTree [Rambaut

and Drummond, 2012] and functions from R package ggtree [Yu et al., 2023].

5.3 Results

5.3.1 Comparison of CsgA and CsgB sequences

Both sequences of CsgA and CsgB from Escherichia coli have the same length of 151 amino

acid residues and demonstrate the same structure consisting of a signal peptide, a separating

sequence and five repeating units of similar length (Fig. 3). They also are amyloids that interact

with each other [Zhou et al., 2012c]. All of that would suggest that these proteins are close

homologs with common and rather recent ancestry. However, the optimal global alignment

using the Needleman-Wunsch algorithm produced quite poor alignment, with only 22% identity

(Fig. 23).

CsgA 1 ---------MKLLKVAAIAAIVFSGSALAGVVPQYGGGGNHGGGGNNSGP 41

:.:|....|||.  :|..||

CsgB 1 MKNKLLFMMLTILGAPGIAAA--AGYDLA---------------------  27

CsgA 42 NSELNIYQYGGGNSALALQTDARNSDLTITQHGGGNGADVGQGSDDSSID 91

|||.|.       :...|...:.|....|.|.|..|.|.:.||.......

CsgB 28 NSEYNF-------AVNELSKSSFNQAAIIGQAGTNNSAQLRQGGSKLLAV 70

CsgA 92 LTQRGFGNSATLDQWNGKNSEMTVKQFGGGNGAAVDQTASNSSVNVTQVG 141

:.|.|..|.|.:|| .|..:...:.|.|..|.|::.|.|..::..:.|.|

CsgB 71 VAQEGSSNRAKIDQ-TGDYNLAYIDQAGSANDASISQGAYGNTAMIIQKG 119

CsgA 142 FGNNATAHQY----------------------  151

.||.|...||

CsgB 120 SGNKANITQYGTQKTAIVVQRQSQMAIRVTQR 151

Figure 23: Global alignment between CsgA (P28307) and CsgB (P0ABK7) sequences.

The optimal local alignment using the Smith-Waterman algorithm was not better. It in-

creased the identity to only 30% (Fig. 24).
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It would suggest that these proteins are not at least close homologs. These analyses imply

also that the sequence organization of CsgA and CsgB could evolve in converge and their

evolution was more complicated. Therefore, we decided to study this subject in detail using a

more advanced approach.

CsgA 42 NSELNIYQYGGGNSALALQTDARNSDLTITQHGGGNGADVGQGSDDSSID 91

|||.|.       :...|...:.|....|.|.|..|.|.:.||.......

CsgB 28 NSEYNF-------AVNELSKSSFNQAAIIGQAGTNNSAQLRQGGSKLLAV 70

CsgA 92 LTQRGFGNSATLDQWNGKNSEMTVKQFGGGNGAAVDQTASNSSVNVTQVG 141

:.|.|..|.|.:|| .|..:...:.|.|..|.|::.|.|..::..:.|.|

CsgB 71 VAQEGSSNRAKIDQ-TGDYNLAYIDQAGSANDASISQGAYGNTAMIIQKG 119

CsgA 142 FGNNATAHQY    151

.||.|...||

CsgB 120 SGNKANITQY    129

Figure 24: Local alignment between CsgA (P28307) and CsgB (P0ABK7) sequences.

5.3.2 Collection of CsgA and CsgB homologs

Since CsgA and CsgB sequences from E. coli show a very poor sequence similarity, we

applied a sensitive search using PSI-BLAST dedicated to distant homologs. Thanks to this

approach, we collected the set of 15,703 potential homologous sequences in separated searches

for these curli proteins. It can be added that these sequenced showed no significant similarity

at the assumed threshold E-value < 0.001 after the first iteration. The CsgA found the CsgB

after the second searching iteration with E-value 9.4E-10, whereas CsgB identified CsgA only

after the third iteration with E-value 2.4E-10. It means that they are distant homologs, but

the significant similarity can be confirmed after more sensitive searches. From that, we selected

15,180 sequences that contained at least one of three conserved curlin domains identified in the

reference CsgA and CsgB proteins (Tab. 9). In the vast majority of cases, more than 95%,

the curlin domain was found as the best hit. Among sequences with the curlin domains, 488

contained also other domains. Some of them can represent spurious hits. The most common

was CDD:227596, i.e., AAA ATPase containing von Willebrand factor type A (vWA) domain,

found in 118 cases. Some of them can represent spurious hits.
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Table 9: Result of searches for curlin domains (CDD:182211, CDD:182242 and
CDD:429248) in the set of collected CsgA and CsgB homologs.

Type of hits Number Percent

Curlin domain found as the best hit 15,029 95.7

Curlin domain found but not as the best hit 151 1.0

Only other domain was found 165 1.1

No domain was found 358 2.3

5.3.3 Taxonomic distribution of CsgA and CsgB homologs

The taxonomic distribution of CsgA and CsgB homologs (Tab. 10) indicates that they

are in majority representatives of Bacteria and in this domain of life these proteins mainly

evolved. More than 98% of sequences are annotated as bacterial. Their presence in other

domains of life can be associated with a horizontal gene transfer, e.g., to viruses and other

bacterial groups. However, the contamination of samples cannot be excluded, and these cases

should be individually verified. It concerns especially those obtained from metagenomics studies

and draft genomic sequencing. Other sequences can represent false positives, especially those in

higher eukaryotes, e.g., K+- dependent Na-/Ca+ exchanger and AAA ATPase with vWA domain

in a higher plant, collagen α-1 and ABC transporter F in crustaceans, a zinc finger protein,

dynein and intraflagellar transport protein in fishes as well as histone-lysine N-methyltransferase

in birds. Some regions of these sequences due to specific features can resemble curli protein

sequences, which is an interesting example of molecular convergence.
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Table 10: Taxonomic distribution of CsgA and CsgB homologs in domains of life
and their main groups.

Domain Group Number Percent

Archaea Euryarchaeota 11 84.62

Archaea Candidatus_Pacearchaeota 2 15.38

Eukaryota Metazoa 123 72.78

Eukaryota Viridiplantae 37 21.89

Eukaryota Fungi 7 4.14

Eukaryota SAR 2 1.18

Bacteria Proteobacteria 12795 85.31

Bacteria Bacteroidota 1825 12.17

Bacteria Firmicutes 116 0.77

Bacteria Balneolaeota 68 0.45

Bacteria Actinobacteria 28 0.19

Bacteria Nitrospinae_Tectomicrobia_group 22 0.15

Bacteria others 18 0.12

Bacteria Nitrospirae 18 0.12

Bacteria Calditrichaeota 16 0.11

Bacteria Chlorobi 16 0.09

Bacteria Ignavibacteriae 13 0.08

Bacteria Rhodothermaeota 12 0.06

Bacteria Thermodesulfobacteria 9 0.04

Bacteria Cyanobacteria 6 0.03

Bacteria Fibrobacteres 5 0.03

Bacteria Candidatus_Dadabacteria 4 0.02

Bacteria Aquificae 3 0.02

Bacteria candidate_division_KSB1 3 0.02

Bacteria Patescibacteria_group 3 0.01

Bacteria Acidobacteria 2 0.01

Bacteria Candidatus_Auribacterota 2 0.01

Bacteria Candidatus_Poribacteria 2 0.01

Bacteria Chloroflexi 2 0.01

Bacteria environmental_samples 2 0.01

Bacteria Kiritimatiellaeota 2 0.01

Bacteria Parcubacteria_group 1 0.01

Bacteria Planctomycetota 1 0.01

Viruses Duplodnaviria 3 0.02

Viruses environmental_samples 1 0.01
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Table 11: Taxonomic distribution of CsgA and CsgB homologs in selected bacte-
rial groups.

Group Subgroup Number Percent

Bacteroidota Flavobacteriia 1010 55.34

Bacteroidota Cytophagia 471 25.81

Bacteroidota Bacteroidia 160 8.77

Bacteroidota Bacteroidetes 85 4.66

Bacteroidota other 50 2.74

Bacteroidota Saprospiria 40 2.19

Bacteroidota Sphingobacteriia 7 0.38

Bacteroidota Chitinophagia 1 0.05

Bacteroidota environmental 1 0.05

Proteobacteria γ-Proteobacteria 8986 70.23

Proteobacteria α-Proteobacteria 3076 24.04

Proteobacteria β-Proteobacteria 648 5.06

Proteobacteria δ-Proteobacteria 43 0.34

Proteobacteria other 23 0.18

Proteobacteria ζ-Proteobacteria 9 0.07

Proteobacteria Oligoflexia 7 0.05

Proteobacteria Hydrogenophilalia 2 0.02

Proteobacteria ε-Proteobacteria 1 0.01

The most abundant in curli homologs in Bacteria are Bacteroidota and Proteobacteria (Tab.

10 and 11. They constitute, 85% and 12% , respectively. Considering their subgroups, the largest

number of homologs was detected in Flavobacteriia (55% of Bacteroidota) α-Proteobacteria

(24% of Proteobacteria) and γ-Proteobacteria (70% of Proteobacteria) (Tab. 12), which indicates

that these proteins evolved mainly in these groups. Among α-Proteobacteria, Hyphomicrobiales

(56%) has most of the homologs, whereas in γ-Proteobacteria, Enterobacterales (43%) and

Pseudomonadales (29%) are most abundant (Tab. 12). The sequences are not evenly distributed

across subgroups. It can be related with the bias in the number of sequenced genomes associated

with a preference of researchers and the ease of culturing and isolation from the environment.
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Table 12: Taxonomic distribution of CsgA and CsgB homologs in domains of life
and their main groups.

Group Subgroup Number Percent

α-Proteobacteria Hyphomicrobiales 1717 55.82

α-Proteobacteria Sphingomonadales 592 19.25

α-Proteobacteria Rhodobacterales 356 11.57

α-Proteobacteria Hyphomonadales 117 3.80

α-Proteobacteria other 108 3.51

α-Proteobacteria Rhodospirillales 82 2.67

α-Proteobacteria Maricaulales 45 1.46

α-Proteobacteria Caulobacterales 42 1.37

α-Proteobacteria Parvularculales 7 0.23

α-Proteobacteria Rickettsiales 6 0.20

α-Proteobacteria Emcibacterales 4 0.13

γ-Proteobacteria Enterobacterales 3833 42.66

γ-Proteobacteria Pseudomonadales 2626 29.22

γ-Proteobacteria Alteromonadales 1114 12.40

γ-Proteobacteria Oceanospirillales 406 4.52

γ-Proteobacteria Vibrionales 304 3.38

γ-Proteobacteria Cellvibrionales 261 2.90

γ-Proteobacteria Aeromonadales 216 2.40

γ-Proteobacteria other 93 1.03

γ-Proteobacteria Chromatiales 71 0.79

γ-Proteobacteria Methylococcales 20 0.22

γ-Proteobacteria Moraxellales 10 0.11

γ-Proteobacteria Nevskiales 10 0.11

γ-Proteobacteria Gallaecimonas 6 0.07

γ-Proteobacteria Xanthomonadales 6 0.07

γ-Proteobacteria sulfur-oxidizing 4 0.04

γ-Proteobacteria Thiotrichales 3 0.03

γ-Proteobacteria Candidatus 2 0.02

γ-Proteobacteria Pasteurellales 1 0.01
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5.3.4 Initial clustering of CsgA and CsgB homologs

In order to comprehend such a huge set of sequences, we carried out their clustering in

CLANS based on the results of pairwise BLASTP searches. The algorithm distributed the

studied sequences in two-dimensional space according to their BLAST pairwise sequence simi-

larities (Fig. 25). Each sequence is represented by a point in the plot, and lines correspond to

attractive forces proportional to the significance of the similarity.

C1

C0

CsgA

CsgB

Figure 25: Analysis of 15,180 CsgA and CsgB homologs in CLANS showing identified

clusters. The analyzed sequences are represented by vertices connected by edges reflecting attractive

forces proportional to the negative logarithm of P-value. The grayness intensity of the connections is

proportional to these forces. Recognized clusters were marked by different colors. The most numerous

are indicated as C0 and C1. Yellow circles represent the reference CsgA and CsgB sequences.

The analysis distinguished 40 clusters including from 4 to 5200 sequences. The clusters are

marked by various colors in the plot. The most numerous cluster C0 is located in the center
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of the plot and surrounded by smaller ones. Six clusters are clearly separated from the main

grouping in the center. Among them are those that contain the reference sequences of CsgA

and CsgB, which are separated into two different clusters located at a great distance from each

other. The CsgA cluster is the most distantly placed from the middle of the plot. Although

members of these two clusters are not directly connected by the lines, other clusters relate them.

The CsgA cluster is strongly connected with cluster C1, which is very close to the CsgB cluster.

The results indicate that CsgA and CsgB are distant homologs not directly related and CsgB

is more similar to other sequences than CsgA.

Archaea

Bacteria

Eukaryota

Viruses

CsgA

CsgB

Figure 26: Analysis of 15,180 CsgA and CsgB homologs in CLANS, showing sequences

from domains of life. The analyzed sequences are represented by vertices connected by edges

reflecting attractive forces proportional to the negative logarithm of the P-value. The grayness

intensity of the connections is proportional to these forces. Yellow circles represent the reference

CsgA and CsgB sequences.
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Most homologs (14,993) that were found belong to the Bacteria domain, which are widely

distributed in the plot (Fig. 26). Only 4 were found in viruses, 13 in Archaea and 169 in

Eukaryota. The archaeal and eukaryotic (169) sequences are mainly grouped in the center,

whereas viral sequences are placed at various locations. Some of them are distantly located

from others and represented by separate points. Some eukaryotic sequences are placed close to

CsgA homologs.

CsgA

CsgB

Bacteroidota
a-Proteobacteria
b-Proteobacteria
other g-Proteobacteria
Enterobacterales
Pseudomonadales
Alteromonadales
Oceanospirillales
Vibrionales

selected
g-Proteobacteria
groups

Figure 27: Analysis of 15,180 CsgA and CsgB homologs in CLANS, showing sequences

from selected bacterial groups. The analyzed sequences are represented by vertices connected

by edges reflecting attractive forces proportional to the negative logarithm of P-value. The grayness

intensity of the connections is proportional to these forces. Yellow circles represent the reference

CsgA and CsgB sequences.

Since the most abundant are bacterial sequences, we marked the most numerous bacterial

groups in the CLANS plot (Fig. 27). Bacteroidota sequences are separated into two main groups



5.3 Results 77

in the center of the plot, β-Proteobacteria are placed in the middle too. Some α-Proteobacteria

sequences are also located in the center, but others create one clear group at the border of the

central groupings and two distantly located. Selected γ-Proteobacteria subgroups are distributed

into separated sets. Enterobacterales are placed in two groups, including the reference CsgA

and CsgB sequences, clearly isolated from others. Pseudomonadales are present in at least

three groups at the boundary of the main set. Alteromonadales and Oceanospirillales are inside

the plot, but at least two groups for each of them can be recognized. Vibrionales are clearly

separated from the main grouping. The distribution of these sequences suggests that CsgA and

CsgB homologs are the most abundant among Proteobacteria, but some homologs can be also

found in Bacteroidota. The presence of many separated clusters with a main grouping indicates

a rapid differentiation of curli proteins into various subgroups and further expansion in one

taxonomic clade. However, sequences affiliated with one taxonomic clade are often separated,

which means that some duplications could occur before this clade evolved and/or the sequences

were subjected to rapid differentiation. This applies also to Enterobacterales sequences, which

are clearly separated.

5.3.5 Signal peptide prediction

The inspection of obtained multiple sequence alignments showed that many sequences are

truncated and fragmentary. Therefore, we removed them, leaving their identical but longer

homologs. It resulted in a set of 13,652 sequences, which were further studied.

Since the CsgA and CsgB proteins are equipped with an N-terminal signal peptide respon-

sible for their extracellular transport, we searched for this feature (Tab. 13).

Table 13: Results of signal peptide prediction in 13,652 CsgA and CsgB homologs.

Feature Number Percent

SP (Sec/SPI) 12760 93.47

OTHER (no SP) 778 5.70

LIPO (Sec/SPII) 113 0.83

TAT (Tat/SPI) 1 0.01

The analyses showed the presence of the Sec signal peptide (Sec/SPI), which is a “standard”
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secretory signal peptide, transported by the Sec translocon and cleaved by Signal Peptidase I

(Lep). It was identified in more than 93% of sequences. For almost 95% of them, the probability

was greater than 0.9. Less than 1% of sequences revealed a lipoprotein signal peptide (Sec/SPII),

which is transported by the Sec translocon and cleaved by Signal Peptidase II (Lsp). They can

represent false positives because we found no specific taxonomic distribution of these sequences.

Only one sequence showed, with a low probability of 0.43, Tat signal peptide (Tat/SPI), which

is transported by the Tat translocon and cleaved by Signal Peptidase I (Lep). In almost 6%

of sequences, no signal peptide was predicted. Among them, there are also many eukaryotic

sequences. In the case of bacterial sequences showing the unquestionable presence of the curlin

domains, the negative results can be related to the incompleteness of their N-terminal ends.

The cleavage site of the signal peptide was predicted with a median probability of 0.978.

More than 91% of cases showed a probability greater than 0.95 The length of the predicted

signal peptide varied from 3 to 67 residues, but almost 63% of cases were in a narrow range

from 20 to 22 and 83% from 20 to 26 (Fig. 28).
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Figure 28: The distribution of signal peptide length predicted in 12760 CsgA and CsgB

homologs.

The shortest signal peptides were predicted with very low probability. The length of most
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peptides corresponds well to those annotated in UniProt [UniProt Consortium, 2018] for E.

coli CsgA and CsgB, which are 20 and 21 residues long. The peptide for CsgA was verified

experimentally [Arnqvist et al., 1992]. The results indicate that the most collected homologs

demonstrate a typical CsgA and CsgB structure, including the N-terminal signal peptide.

5.3.6 Clustering of the refined set of CsgA and CsgB homologs

After removing the shorter sequence, we clustered again the sequences in CLANS. The al-

gorithm identified 17 main groups (Tab. 14, Fig. 29). Similarly to the previous clustering,

the center of the plot is occupied by one huge cluster, which is surrounded by smaller dis-

tinct clusters. Clusters including CsgA and CsgB reference sequences, C6 and C1 respectively,

are similarly located as previously, but the algorithm recognized additional clusters in their

neighborhood. They are C3 and C5 at C6 and C2 with some sequences from C0 at C1.

Table 14: Clusters and their count identified for 13652 CsgA and CsgB homologs
in CLANS.

Cluster Number Percent

C0 9642 70.63

C1 (CsgB) 572 4.19

C2 570 4.18

C3 442 3.24

C4 412 3.02

C5 373 2.73

C6 (CsgA) 366 2.68

C7 346 2.53

C8 279 2.04

C9 193 1.41

C10 185 1.36

C11 111 0.81

C12 88 0.64

C13 50 0.37

C14 16 0.12

C15 4 0.03

C16 3 0.02
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Figure 29: Analysis of CsgA and CsgB homologs in CLANS, showing 17 main groups.

The analyzed sequences are represented by vertices connected by edges reflecting attractive forces

proportional to the negative logarithm of the P-value. The grayness intensity of the connections is

proportional to these forces. Yellow circles represent the reference CsgA and CsgB sequences.

Applying the next step of clustering, we separated the most numerous cluster C0 into smaller

ones, whose number was also 17 (Tab.15, Fig. 30). They formed distinct groups in the CLANS

plot, and the number of their members was comparable with those found in the previous step.

The 33 clusters determined in these analyses were subjected to further studies.
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Table 15: Clusters and their count identified for the most numerous cluster C0
in CLANS.

Cluster Number Percent

C0_0 2896 30.04

C0_1 1491 15.46

C0_2 950 9.85

C0_3 720 7.47

C0_4 686 7.11

C0_5 638 6.62

C0_6 472 4.90

C0_7 458 4.75

C0_8 457 4.74

C0_9 260 2.70

C0_10 152 1.58

C0_11 130 1.35

C0_12 130 1.35

C0_13 97 1.01

C0_14 60 0.62

C0_15 37 0.38

C0_16 8 0.08
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Figure 30: Re-analysis of CsgA and CsgB C0 cluster in CLANS, showing 17 main groups.

The analyzed sequences are represented by vertices connected by edges reflecting attractive forces

proportional to the negative logarithm of the P-value. The grayness intensity of the connections is

proportional to these forces. Different colors represent different groups.

5.3.7 Phylogenetic relationships between clusters and sequences of curli homologs

To infer evolutionary relationships between the identified 33 clusters, we calculated a con-

sensus phylogenetic tree based on HMM profiles produced from alignments of sequences from

each cluster (Fig. 31).
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Figure 31: The consensus tree is based on HMM profiles grouping clusters of CsgA and

CsgB homologs. On the right, a taxonomic distribution of a given cluster was presented. Numbers

at branches indicate the number of trees, out of three, that produced a given branching pattern.

Most groupings in the tree were congruently inferred by three methods. Some inconsistencies

were for deep branches because one method produces a different topology. Clusters for CsgA

and CsgB are clearly separated and significantly grouped with the clusters that were adjacent

to them also in the CLANS result. These clusters are dominated by representatives of Enter-
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obacterales, which are not present in such a high abundance in other clusters. The CsgB cluster

with its relatives is grouped with three others, including almost exclusively α-Proteobacteria

representatives. Nevertheless, it should be noticed that the CsgA and CsgB clusters are in

some way related when considering the whole tree. They are collectively present in a sub-

tree, including almost half of all clusters, and separated from the rest. Besides two separated

groups of Enterobacterales, there are also clusters of other taxonomic groups that do not always

form monophyletic clades and are separated in the tree. It concerns, e.g., α-Proteobacteria,

β-Proteobacteria, and Pseudomonadales. There are also heterogeneous clusters including se-

quences from various taxonomic groups. Three clusters comprise eukaryotic sequences from

fungi and animals (Metazoa) in a significant monophyletic clade. The separation of sequences

from the main groups of Proteobacteria indicates that the CsgA and CsgB homologs duplicated

before the divergence of these groups.

Based on the results, we selected to further analyses sequences from 15 clusters (C1-C6,

C12, C0_2, C0_4-C0_6, C0_9, C0_11, C0_12, C0_16) that were grouped together and in-

cluded the CsgA and CsgB clusters in the HMM profile phylogeny. Using their alignment, we

inferred a maximum likelihood phylogenetic tree (Fig. 32). It revealed the presence of the

clade including many α-Proteobacteria sequences and also some β-Proteobacteria, which are

clearly separated from other sequences coming mainly from γ-Proteobacteria. This split is sig-

nificant, with 95%. In the second clade, we can identify four main lineages. The first group with

100% support contains almost exclusively representatives of Enterobacterales including the ref-

erence CsgA sequence. The second clade contains mostly Bacteroidota with 93% support. The

third, supported in 96%, comprises predominantly other γ-Proteobacteria sequences, whereas

the fourth clade clusters with 80% support Enterobacterales including the CsgB reference and

other γ-Proteobacteria representatives.

This topology demonstrates a significant partition on two Enterobacterales clades including

the reference curli proteins and suggests that the separation of CsgA and CsgB occurred after

the divergence of γ-Proteobacteria from α- and β-Proteobacteria but before the differentiation

of γ-Proteobacteria lineages. In the main groups marked in the tree (Fig. 32), there are also

placed individual sequences or their small bunches assigned to other taxonomic groups, e.g.,

among γ-Proteobacteria sequences there are also Bacteroidota as well as α- and β-Proteobacteria
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representatives, which can suggest a horizontal gene transfer. Similarly, the closer relation

of the second clade comprising Bacteroidota with γ-Proteobacteria than the latter with α-

Proteobacteria can suggest that the Bacteroidota acquired a CsgA homolog via horizontal gene

transfer just from γ-Proteobacteria.

0.5
aa subsitutions/site

CsgA

CsgB

other g-Proteobacteria
other g-Proteobacteria

a-Proteobacteria

b-P
roteobacteria

Bacteroidota

Enterobacterales

Enterobacterales

95

89
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97

98

100

73

93

80

80

87
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90

67

Figure 32: The maximum likelihood tree based on the alignment of 5764 sequences shows

a close similarity to the reference CsgA and CsgB sequences. Numbers at nodes correspond

to support values calculated by SH-aLRT procedure. Only selected support values at deep branches

were shown. Branches of the most numerous bacterial groups were colored and labeled.
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5.3.8 Phylogenetic relationships between Enterobacterales curli homologs

In order to analyze in detail the phylogeny of CsgA and CsgB proteins in Enterobacterales,

we inferred separate trees for appropriate sequences. They were derived from clusters C3, C5

and C6 in the case of CsgA as well as C1, C2 and C06 for CsgB.

In the phylogenetic tree of CsgA homologs (Fig. 33), we can notice a big clade including

almost all sequences from Enterobacteriaceae, which is significantly separated from the other

group. It comprises sequences assigned to Yersiniaceae, which do not form a monophyletic

group but separate sequentially on the tree. The next diverging lineages belong to Kluyvera

and Shimwellia classified to Enterobacteriaceae and are sisters to a smaller monophyletic clade of

Budviciaceae. Interestingly, within Enterobacteriaceae is placed a sequence assigned to a fungus

Astraeus odoratus, and among Yersiniaceae, sequences annotated to Pseudomonas reactans from

Pseudomonadales. It suggests a horizontal gene transfer from Enterobacter to Astraeus odoratus

and from Ewingella to Pseudomonas reactans. However, these sequences come from the draft

and whole genome sequencing, so should be verified in terms of contamination.

The tree of CsgB homologs also contains a significant clade grouping many Enterobacte-

riaceae taxa (Fig. 34). The second main clade also comprises members of Budviciaceae and

Yersiniaceae, but the former is here monophyletic as the latter. Interestingly, an additional clade

appears, which includes representatives of Hafniaceae and is a sister to Yersiniaceae. Similarly,

to the CsgA tree, there are Enterobacteriaceae sequences from Kluyvera and also Klebsiella,

which are separated from the main clade but are significantly grouped with the second one.

We can also notice Pseudomonas reactans sequence coming from the same sequencing project

as its CsgA sequence. It is also clustered with Ewingella suggesting a horizontal gene transfer.

Another case of transfer can demonstrate a sequence assigned to Bacteroidales bacterium, which

was obtained from metagenomic sequencing of the coral skeleton [Cárdenas et al., 2022].

In these two trees, some Enterobacteriaceae genera (Kluyvera, Shimwellia and Klebsiella)

are clearly separated from the main clade, which can suggest a horizontal gene transfer to them

from other Enterobacterales families. Alternatively, these genera should not be classified to the

current family but assigned to another. In both trees, there are sequences assigned to individual

genera and species, which are clustered into monophyletic clades, but there are exceptions. They

can be incorrectly assigned to the current taxon.
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Figure 33: The maximum likelihood tree based on the alignment of 1083 sequences derived

from clusters C3, C5, and C6 shows a close similarity to the reference CsgA sequence.

Numbers at nodes correspond to support values calculated by SH-aLRT procedure. Many branches

including representatives of the same genus or species were compressed. The most abundant taxon

was bolded. The number of taxa in minority was shown, as well as the total number of sequences in

the clade.
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Figure 34: The maximum likelihood tree based on the alignment of 1083 sequences de-

rived from clusters C1, C2, and C06 shows a close similarity to the reference CsgB

sequence. Numbers at nodes correspond to support values calculated by the SH-aLRT procedure.

Many branches including representatives of the same genus or species were compressed. The most

abundant taxon was bolded. The number of taxa in minority was shown, as well as the total num-

ber of sequences in the clade. Sequences obtained from the clusters contained representatives not

only from Enterobacterales but also from other bacterial taxonomic groups, which were significantly

grouped in one clade and used as an outgroup.

5.3.9 Variation of duplicated regions in Enterobacterales curli homologs

In order to study the evolution of repeating regions in curli proteins, we derived them from

alignments of the Enterobacterales sequence and inferred their phylogenetic relationships based

on their HMM profiles (Fig. 35). All three approaches produced very similar topology. Regions

derived from a given type of curli protein, CsgA or CsgB, are grouped together. In the case of

CsgA regions, R3 is closely related with R5 and R1 with R4. R2 is the sister to the latter. CsgB

regions showed a different clustering. R3 grouped with R4 and next clustered with R1. R2 and

R5 are joined together in two minimum evolution methods, whereas in FM R2 is sister to R3,
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R4 and R1 clade. It can be also noticed that region 5 from CsgB shows the largest divergence

in comparison to others. Among CsgA regions, R1 is the most divergent.

These relationships can present a potential order of duplication of these regions. The results

indicate that the regions were duplicated in a different order in these two curli proteins and

regions in one protein are more closely related with themselves than with regions in the other

protein.
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Figure 35: Trees produced by balanced minimum evolution (BME), minimum evolution

(ME) and Fitch-Margoliash criterion (FM) as well as a consensus tree based on HMM

profiles grouping duplicated regions of CsgA and CsgB homologs from Enterobacterales.

Numbers at branches in the consensus tree indicate the number of trees, out of three, that produced

a given branching pattern.
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Figure 36: Sequence logos based on HMM profiles of five duplicated regions from Enter-

obacterales CsgA sequences.

In Fig. 36 and 37, we presented sequence logos derived from the HMM profiles of five dupli-

cated regions from Enterobacterales curli proteins. All CsgA regions share conserved glutamine

in the 9th and 20th positions, as well as asparagine in the 14th position. Quite conserved is also

the third position with serine, the 11th position with glycine and the 16th position with alanine.
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In the 13th position, there is also dominated glycine. The 7th position can be also considered

conserved in respect of the presence of hydrophobic residues. Some sites share similar residues

only between some regions that discriminate them from others, e.g., R1, R3, R4 and R5 have

mostly hydrophobic residues, whereas R2 polar tyrosine in the 5th position; R3 and R5 have

phenylalanine, whereas R1, R2 and R4 glycine in the 12th position; R2, R3 and R5 have thre-

onine, whereas R1 tyrosine and R4 serine in the 8th position. The positions 6, 15, and 18 can

group some regions in pairs containing the same dominated amino acid: R2+R4 and R1+R5;

R1+R3 and R2+R4; R2+R4 and R1+R5, respectively. The same can be applied to positions

17 and 19, which can cluster R3+R5 and R3+R4, respectively. Three positions, i.e., 1, 10, and

21 are unique for each region in terms of the most common residue.

The CsgB regions also contain conserved residues in many positions, i.e., glutamine in the

10th and 21st positions, alanine in the 6th position, hydrophobic residues in the 8th and 19th

positions, as well as polar residues in the 13th position. In three positions, i.e., 12, 15 and 17,

there is the same dominant amino acid in four regions, from R1 to R4. They have predomi-

nantly glycine, asparagine and alanine, whereas R5 has glutamine, methionine and isoleucine,

respectively. In turn, in the 7th position R1, R2, R4 and R5 contain hydrophobic residues,

whereas R3 polar tyrosine. Glycine is also dominated in the first and 14th positions in R1, R2

and R4 as well as R2, R3 and R5, respectively. The 5th position can cluster R4 with R5 due

to common threonine and R2 with R3 due to common leucine. In the 4th position, R3 and R4

share asparagine in contrast to others. The same amino acid is also present in R4 and R5 in

positions 9 and 20. Six positions, 2, 3, 11, 16, 18, and 21, are distinct across all these regions

in terms of preferred residues.
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Figure 37: Sequence logos based on HMM profiles of five duplicated regions from Enter-

obacterales CsgA sequences.

Pairwise comparisons of Enterobacterales sequences for the individual regions indicate that

they evolved at a different rate (Tab. 16). Generally, CsgA regions showed a larger variation

(median 0.24) than CsgB (0.23). Considering the individual regions in CsgA homologs, the

smallest fraction of different positions (p-distance) revealed region R5, with a median of 0.19

(Fig. 38). R2 regions were more different (0.24), R1 and R3 showed identical median values of
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0.29, whereas the most divergent occurred in R4 (0.38). In the case of CsgB regions, R5 and

R4 accumulated the smallest number of substitutions (Fig. 38). Their median value was the

same, i.e. 0.14. A greater distance showed R1 and R3, i.e. 0.27, whereas the largest difference

was R2 (0.3). All differences were statistically significant with p-value < 2.2e-16.

Table 16: Median and 25% and 75% quartiles for pairwise distance (i.e. a fraction
of different positions) between regions of CsgA and CsgB homologs.

Region CsgA CsgB

R1 0.286 [0.048-0.381] 0.273 [0.182-0.364]
R2 0.238 [0.048-0.286] 0.318 [0.182-0.409]
R3 0.286 [0.048-0.333] 0.273 [0.182-0.364]
R4 0.381 [0.095-0.429] 0.136 [0.091-0.227]
R5 0.191 [0.048-0.333] 0.136 [0.046-0.182]
All 0.238 [0.095-0.381] 0.227 [0.091-0.364]

CsgA CsgB

Figure 38: Box-plots of pairwise distance (i.e. fraction of different positions) between

sequences for the individual regions of CsgA and CsgB homologs. The thick line indicates

the median, the box shows the quartile range, and the whiskers denote the range without outliers.
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We also checked how the differences between the regions are correlated during evolution

(Tab. 17). Interestingly, they showed quite high significant correlations. The largest correlations

showed the regions in CsgA homologs, from 0.83 to 0.89, whereas in CsgB homologs, they were

smaller, from 0.76 to 0.84. The most correlated occurred R1 with R3 as well as R3 with R4 in

CsgA, whereas in CsgB, R1 with R4 and R3 with R4. All these correlations were statistically

significant with p-value < 2.2e-16. Generally, correlations between adjacent regions are larger

than those between more distant regions. The median for these regions type is 0.875 vs 0.866

for CsgA and 0.793 vs 0.775 for CsgB. The more coordinated evolution in CsgA regions can

be related to more important interactions between them in this protein. The interactions of

individual regions in CsgA are necessary to create amyloid fibrils, whereas CsgB is only an

initiator of this process [Hammer et al., 2007, Shu et al., 2012]. All these correlations were

statistically significant with p-value < 2.2e-16.

Table 17: Spearman correlation coefficients between p-distances (fraction of dif-
ferent positions) calculated for pairwise region comparisons for CsgA (the upper
triangle) and CsgB homologs (the lower triangle).

R1 R2 R3 R4 R5

R1 - 0.883 0.892 0.884 0.865

R2 0.800 - 0.868 0.867 0.862

R3 0.782 0.762 - 0.890 0.833

R4 0.837 0.757 0.844 - 0.850

R5 0.759 0.800 0.767 0.786 -
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6 Structural variability of CsgA and CsgB variants

6.1 Research objectives

The other goal of this investigation was to verify the importance of the various repeating units

of functional amyloids, i.e., CsgA and CsgB proteins, participating in amyloid fibril formation

(Fig. 3). We would like to find out which regions are involved in aggregation and how they

affect its rate. In addition, we wanted to verify if the different variants of these proteins have

altered aggregation characteristics and how the reactions between these regions can change. To

achieve that, we designed, manufactured, and purified selected CsgA and CsgB variants, which

were verified by ThT assay and AFM.

6.2 Materials and Methods

6.2.1 Cloning of csgA and csgB

Six variants of CsgA (Tab. 18) and six of CsgB (Tab. 19) proteins were selected according

to the bioinformatic results and scientific papers. Based on other work [Wang et al., 2008], we

decided to use proteins with deletions of particular regions that, although very similar, do not

have the same functions. We then analyzed the sequences we designed using our AmyloGram

predictor to see if these proteins still have amyloidogenic properties. We then wanted to validate

this prediction experimentally and check on HDX-MS which regions interact with each other.

Besides the wild type (WT), we studied variants that are characterized by the deletion of one

of the five repeating units. Moreover, in each protein, we removed the signal peptide region and

added His-tag to be able to purify it on the column. Based on them, appropriate nucleotide

sequences were prepared, which were cloned and expressed by standard genetic procedures in

Escherichia coli BL21 strain [Zhou et al., 2012b, Andreasen et al., 2019b]. In the case of deletions

in the curli gene region, we used the PCR overlapping technique [Bryksin and Matsumura, 2010]

and PIPE (Polymerase Incomplete Primer Extension) technique [Klock and Lesley, 2009].
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Table 18: List of studied variants of CsgA proteins.

Variant Sequence

CsgA WT GVVPQYGGGGNHGGGGNNSGPNSELNIYQYGGGNSALALQT
DARNSDLTITQHGGGNGADVGQGSDDSSIDLTQRGFGNSATL
DQWNGKNSEMTVKQFGGGNGAAVDQTASNSSVNVTQVGFG
NNATAHQYEHHHHHH

CsgA ∆SP∆R1 6xHis GVVPQYGGGGNHGGGGNNSGPNSDLTITQHGGGNGADVGQG
SDDSSIDLTQRGFGNSATLDQWNGKNSEMTVKQFGGGNGAA
VDQTASNSSVNVTQVGFGNNATAHQYEHHHHHH

CsgA ∆SP∆R2 6xHis GVVPQYGGGGNHGGGGNNSGPNSELNIYQYGGGNSALALQT
DARNSSIDLTQRGFGNSATLDQWNGKNSEMTVKQFGGGNGA
AVDQTASNSSVNVTQVGFGNNATAHQYEHHHHHH

CsgA ∆SP∆R3 6xHis GVVPQYGGGGNHGGGGNNSGPNSELNIYQYGGGNSALALQT
DARNSDLTITQHGGGNGADVGQGSDDSEMTVKQFGGGNGA
AVDQTASNSSVNVTQVGFGNNATAHQYEHHHHHH

CsgA ∆SP∆R4 6xHis GVVPQYGGGGNHGGGGNNSGPNSELNIYQYGGGNSALALQT
DARNSDLTITQHGGGNGADVGQGSDDSSIDLTQRGFGNSAT
LDQWNGKNSSVNVTQVGFGNNATAHQYEHHHHHH

CsgA ∆SP∆R5 6xHis GVVPQYGGGGNHGGGGNNSGPNSELNIYQYGGGNSALALQT
DARNSDLTITQHGGGNGADVGQGSDDSSIDLTQRGFGNSAT
LDQWNGKNSEMTVKQFGGGNGAAVDQTASNEHHHHHH

To extract E. coli genomic DNA, the colony was added to 35 µl QuickExtract DNA Ex-

traction Solution (Lucigen), mixed by vortexing, and transferred to a heat block at 65◦C for 6

minutes and 98◦C for 2 minutes. Genomic DNA was used to amplify the curli gene sequence

in PCR, without the region coding for the signal peptide. Specific primers with overlaps for

restriction enzymes were used.

The PCR product was purified with QIAquick PCR Purification Kit (Qiagen). For the

construction of protein variants with removed selected regions overlapping PCR and PIPE

methods were used. Primers had a length of approximately 30 nt. All primers that were used in

the reactions are included in Tab. 20 and 21. The PCR products were examined on an agarose

gel, and proper length bands were extracted with GeneJET Gel Extraction Kit (Thermo).
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Table 19: List of studied variants of CsgB proteins.

Variant Sequence

CsgB WT AGYDLANSEYNFAVNELSKSSFNQAAIIGQAGTNNSAQLRQGG
SKLLAVVAQEGSSNRAKIDQTGDYNLAYIDQAGSANDASIS
QGAYGNTAMIIQKGSGNKANITQYGTQKTAIVVQRQSQMAI
RVTQREHHHHHH

CsgB ∆SP∆R1 6xHis AGYDLANSEYNFAVNELSKSSFNLLAVVAQEGSSNRAKIDQTG
DYNLAYIDQAGSANDASISQGAYGNTAMIIQKGSGNKANITQ
YGTQKTAIVVQRQSQMAIRVTQREHHHHHH

CsgB ∆SP∆R2 6xHis AGYDLANSEYNFAVNELSKSSFNQAAIIGQAGTNNSAQLRQGG
SKNLAYIDQAGSANDASISQGAYGNTAMIIQKGSGNKANITQ
YGTQKTAIVVQRQSQMAIRVTQREHHHHHH

CsgB ∆SP∆R3 6xHis AGYDLANSEYNFAVNELSKSSFNQAAIIGQAGTNNSAQLRQGG
SKLLAVVAQEGSSNRAKIDQTGDYNTAMIIQKGSGNKANITQ
YGTQKTAIVVQRQSQMAIRVTQREHHHHHH

CsgB ∆SP∆R4 6xHis AGYDLANSEYNFAVNELSKSSFNQAAIIGQAGTNNSAQLRQGG
SKLLAVVAQEGSSNRAKIDQTGDYNLAYIDQAGSANDASISQ
GAYGKTAIVVQRQSQMAIRVTQREHHHHHH

CsgB ∆SP∆R5 6xHis AGYDLANSEYNFAVNELSKSSFNQAAIIGQAGTNNSAQLRQGG
SKLLAVVAQEGSSNRAKIDQTGDYNLAYIDQAGSANDASISQ
GAYGNTAMIIQKGSGNKANITQYGTQEHHHHHH

The pET24d plasmid was extracted from bacteria possessing it, using GeneJET Plasmid

Miniprep Kit (Thermo). The PCR products and plasmids were cut with restriction enzymes.

Additionally, we used 10x FastDigest Buffer (Thermo). The cut plasmid was validated on an

agarose gel and extracted using GeneJET Gel Extraction Kit (Thermo).

The cut PCR products and plasmids were ligated using T4 DNA Ligase with 10x T4 DNA

Ligase Buffer (Thermo). The plasmids with genes encoding curli proteins were used to trans-

form E. coli BL21 with the heat shock technique. The transformed bacteria were transferred

to an LB-agar plate. After overnight culture, colony PCR was performed. To verify the suc-

cessful transformation, plasmids including the correct insert were extracted with GeneJET Gel

Extraction Kit (Thermo) and sent for Sanger sequencing.
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Table 20: List of primers, constructed by overlap extension method, for amplifi-
cation of selected regions.

Primer name Primer sequence

csga_reg_F ATGGGTGTTGTTCCTCAGTACGG

csga_reg1_del_R AATAGTCAAGTCAGAATTTGGGCCGCTATTATTACCG

csga_reg1_del_F AATAGCGGCCCAAATTCTGACTTGACTATTACCCAGCA

csga_reg2_del_R CAGATCGATTGAGCTGTTACGGGCATCAGTTTGCA

csga_reg2_del_F ACTGATGCCCGTAACAGCTCAATCGATCTGACCCA

csga_reg3_del_R AACCGTCATTTCAGAGTCATCTGAGCCCTGACCA

csga_reg3_del_F CAGGGCTCAGATGACTCTGAAATGACGGTTAAACAGTTCG

csga_reg4_del_R CACGTTGACGGAGGAATTTTTGCCGTTCCACTGATCA

csga_reg4_del_F TGGAACGGCAAAAATTCCTCCGTCAACGTGACT

csga_reg5_del_R GTTAGATGCAGTCTGGTCAACTG

csga_reg_R GTACTGATGAGCGGTCGC

reg_F_NcoI CGGCCCATGGGTGTTGTTCCTCAGTACGG

reg5_del_R_XcoI GCGCTCGAGGTTAGATGCAGTCTGGTCAACTG

reg_R_XcoI GCGCTCGAGGTACTGATGAGCGGTCGC
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Table 21: List of primers, constructed by PIPE method, for amplification of
selected regions.

Primer name Primer sequence

csgB full F NcoI CCATGGATGAAAAACAAATTGTTATTTATGATGTTAACAA
TACTGGG

csgB SP N22 r4 R AATCATCGCAGTATTATTAAATGAAGACTTACTCAATTCATT
TACCGCG

csgB r3 R1 r5 F CAAGGTGCTTATGGTCAGGCAGCCATAATTGGTCAAGC

csgB r3 R1 r5 R TACAATTGCCGTTTTTTTTGAGCCTCCCTGCCG

csgB r3 R2 r5 F CAAGGTGCTTATGGTCTTTTGGCGGTTGTTGCGC

csgB r3 R2 r5 R TACAATTGCCGTTTTATAATCTCCTGTCTGGTCAATCTTTGCC

csgB r3 R3 r5 F CAAGGTGCTTATGGTAACCTTGCATATATTGATCAGGCG

csgB R3 R ACCATAAGCACCTTGCGAAATAC

csgB R3 r3 R GATCAATATATGCAAGGTTACCATAAGCACCTTGCGAAATAC

csgB r3 R3 r5 R TACAATTGCCGTTTTACCATAAGCACCTTGCGAAATAC

csgB n22 R4 F AAGTCTTCATTTAATAATACTGCGATGATTATCCAGAAAGG

csgB r3 R5 r5 F CAAGGTGCTTATGGTAAAACGGCAATTGTAGTGCAGAG

csgB full R his stop
PstI

CTGCAGTTAGTGGTGGTGGTGGTGGTGACGTTGTGTCACG
CGAATAGC

csgB r3 R5 r5 R TACAATTGCCGTTTTACGTTGTGTCACGCGAATAG

csgB r5 R5 F CGCGTGACACAACGTAAAACGGCAATTGTAGTGCAGAG

v-PIPE pET24d
6xHis csgB

AACGTCACCACCACCACCACCACTG

v-PIPE pET24d
N22 csgB

AGCTAAATCATAACCATGGTATATCTCCTTCTTAAAGTTAAAC

i-PIPE csgB ATG
N22 pET24d

AGAAGGAGATATACCATGGGTTATGATTTAGCTAATTCAGAAT
ATAACT

i-PIPE csgB 6xHis
pET24d

GATCTCAGTGGTGGTGGTGGTGGTGACG

6.2.2 Expression and purification of CsgA and CsgB variants using Cobalt Resin

for HDX-MS

It should be emphasized the expression and purification of amyloid proteins is a difficult

task due to their quick aggregation. Therefore, for the expression and purification of these
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proteins, we had to combine and modify protocols developed by Zhou et al. [2012a], Andreasen

et al. [2019a] and Perov et al. [2019]. E. coli BL21 overnight culture was transferred to 1L TB

medium and incubated in 37◦C, with shaking 180 rpm to OD = 0.8-0.9. Protein expression was

induced by adding IPTG to the final concentration of 0.5 mM and incubated for 1.5 h. Cells

were harvested by centrifugation at 4000 g for 25 min in 4◦C. The supernatant was discarded.

The 35 ml of the solubilization buffer (8M GdnHCl, 50 mM potassium phosphate buffer [7.3])

was added to the pellet and sonicated for 1 min with power 10. After gentle rocking for 18-24

h at room temperature, the solution was centrifuged at 10000 g for 10 min in 4◦C. The pellet

was discarded.

The 1.5 ml of HisPur cobalt resin (Thermo) was added to the supernatant and incubated

for 1 h at room temperature with gentle rocking. The resin was collected by centrifugation for 2

min at 700 g and transferred to a polypropylene column (Qiagen). The cobalt resin was washed

with: 1) 10 ml of cold potassium phosphate buffer [7.3] (CPPB) and 2) 6 BV (bed volumes)

of ice-cold 12.5 µM imidazole in CPPB or 1 BV of ice-cold 125 µM imidazole in CPPB (in the

case of CsgA). The eluted proteins were loaded onto the Amicon 30 kDa concentration tube

and centrifuged to remove aggregation seeds and ribosomal proteins. The example results of

purification can be seen in Fig. 39, 40 and 41. Proteins were precipitated using the chloroform-

methanol method and stored at -80◦C.

6.2.3 CsgA expression and purification using Ni-NTA Resin

The E. coli BL21 overnight culture of 30 ml was added to 600 ml of LB medium with 50

mM Kanamycin. Bacterial cultures were incubated in 37◦C, with shaking 180 rpm to OD =

0.6-0.7. Protein expression was induced by adding IPTG to the final concentration of 0.5 mM

and incubated for 1 h. Cells were harvested by centrifugation at 6000 g for 20 min in 4◦C. The

supernatant was discarded, and the remaining pellet was resuspended in 15 ml 8M GdnHCl and

sonicated on ice for 15 mins, 30 s sonication, 30 s break with the amplitude 40%. The solution

was transferred to a falcon tube and left overnight at room temperature with gentle rocking

and centrifuged at 18000 g for 20 mins at room temperature. The pellet was discarded, and the

supernatant was filtered with the filter paper and 0.45 µm filter.

Ni-NTA resin was equilibrated with 1 BV of 8M GdnHCl, then the sample was added and



6.3 Results 101

washed with an additional 1 BV of 8M GdnHCl. The resin was washed with: 1) 10 ml of cold

potassium phosphate buffer [7.3] (CPPB), 2) 2 BV of ice-cold 12.5 mM imidazole in CPPB and

3) 2 BV of ice-cold 300 mM imidazole in CPPB. Samples were run through Amicon 30 kDa

cutoff buffer and concentrated on the Amicon 10 kDa column in 4◦C. The sample was desalted

with Zeba Spin Desalting Columns on LC.

6.2.4 Thioflavin T assay

ThT was dissolved in 50 mM phosphate buffer with pH = 7.3 to a final concentration of 20

µM. Protein samples purified with Ni-NTA resin were diluted in the buffer mentioned above to

the concentration of 0.625, 1.25, 2.5, 5, and 10 µM if it was possible. Each sample, together with

the ThT control, was transferred to a 96-well plate in triplicates. Protein samples purified with

Cobalt resin and dehydrated were resuspended in 8M GdnHCl buffer, sonicated, run through a

30 kDa cutoff concentrator, and desalted with desalting columns. The concentration of samples

was set to approximately 4 µM. Fluorescence was measured in CLARIOstar Plus Microplate

Reader at room temperature in 10 min intervals and 30s of shaking before measurements.

6.2.5 Atomic Force Microscopy

AFM measurements were performed as previously mentioned. Each protein sample was

dissolved to the concentration of 2 µM. The protein solution was applied on the mica for 5

min, gently washed with 2 ml MiliQ water, and dried to change the polarity of the surface for

the easier binding of negatively-charged CsgA proteins. The mica was pretreated with APTES.

AFM images were processed using Gwyddion software [Nečas and Klapetek, 2012].

6.3 Results

Despite many attempts, producing and purifying enough amounts of CsgB protein and its

variants have failed. We were able to identify our product after a small-scale production in only

wild type variant, both on the SDS page gel and Western Blot (Fig. 41 and 42). We also tried

to produce all six variants of CsgB in a greater amount but after purification through Cobalt

resin, we were not able to find any product both on the SDS page and Western Blot. It means
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that the proteins either stayed on the column with resin or were eluted much earlier. In the

case of CsgA, we had no such problems. The wild type during small-scale production can be

seen in Fig. 39 and 40.

Therefore, further analyses were carried out on variants of the CsgA protein. The planned

protein analyses using HDX-MS did not take place, due to the fact that the precipitation,

freezing, and resuspension of the protein purified by Cobalt resin, showed deviating results of

reaction kinetics.

Figure 39: Expression and purification of CsgA. Results of CsgA (ca. 15 kDa) purification.

1) Flow through 1 ml/10 ml, 2) Flow through 10ml/10ml, 3) CsgA after the first elution, 4) CsgA

from the first elution after Amicon 30 kDa concentration filter, 5) Proteins from the first elution

that remained on the filter, 6) CsgA after the second elution, 7) CsgA from the second elution after

Amicon 30 kDa concentration filter, 8) Proteins from the second elution that remained on the filter.
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Figure 40: Western Blot of CsgA eluates. The samples were eluted with the buffer containing

100 and 125 mM imidazole. The CsgA bands are at the height of ∼15 kDa. X indicates a poorly

formed well.

Figure 41: Expression and purification of CsgB. Results of CsgB (ca. 15 kDa) purification. 1)

Flow through 1 ml/10 ml, 2) Flow through 10ml/10ml, 3) CsgB after the first elution, 4) CsgB from

the first elution after Amicon 30 kDa concentration filter, 5) CsgB after the third elution.
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Figure 42: Western Blot of CsgB eluates. The samples were eluted with the buffer containing

125 mM imidazole. 1 and 4) samples from the first elution, 2 and 3) samples after concentration with

Amicon 30 kDa concentration filter, 5) control with only buffer.
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6.3.1 ThT assay
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Figure 43: ThT assay of CsgA variants purified with Cobalt resin. Samples were run on two

different plate readers marked by 1 and 2. The concentration of each sample was approximately 4

µM.

Proteins that were prepared for HDX-MS and dissolved in 8M GdnHCl show a similar

aggregation curve (Fig. 43). It is likely that the proteins, despite precipitation and storage

at -80 cC have aggregated. Dissolving them and then sonicating have broken down existing

amyloid fibrils, but this did not result in changes in aggregation kinetics. CsgA proteins, with

the exception of the ∆R5 variant, showed a similar increase in fluorescence at the same time

(Fig. 43). In contrast, the ∆R5 variant showed a temporary increase in fluorescence levels,

followed by a sudden decrease. Variants ∆R1 and ∆R2 demonstrated the highest fluorescence

values, whereas ∆R3 and ∆R4 smaller. WT CsgA presented rather intermediate values between

them.
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Figure 44: ThT assay of ∆R1, ∆R4, and ∆R5 CsgA variants purified with Ni-NTA resin.

All proteins have concentrations of 0.625, 1.25, 2.5, 5, and 10 µM.

Other aggregation kinetics analyses of the ∆R1, ∆R4, and ∆R5 variants of the CsgA protein

purified with the Ni-NTA deposit and tested immediately after purification were shown in (Fig.

44). Similar to the previous experiment, the ∆R1 variant occurred in the most aggregating

form, which may indicate that the R1 region of the CsgA protein can probably control the

speed of the aggregation process. The ∆R4 and ∆R5 variants of the protein showed no clear

increase in fluorescence intensity, which may indicate that they need much more time to start

the process. The presented results also clearly show that the higher the protein concentration,

the aggregation process starts faster and causes a higher fluorescence.
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Figure 45: ThT assay of ∆R1 and ∆R5 CsgA variants purified with Ni-NTA resin. All

proteins have concentrations of 0.625, 1.25, 2.5, 5 and 10 µM.

Re-examination of the kinetics of ∆R1 and ∆R5 variants (Fig. 45) confirmed the earlier

findings. Variant ∆R5 needs significantly more time to start the aggregation process than

variant ∆R1. The longer incubation needed for aggregation confirms the observations of the

previous analysis, that the R5 region is much more important in this process than R1 despite

the fact that both are necessary in the formation of amyloid fibrils of the CsgA protein.
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Figure 46: ThT assay of WT, ∆R2 and ∆R3 CsgA variants purified with Ni-NTA resin.

All proteins have concentrations of 0.625, 1.25, 2.5, 5 and 10 µM.

Additional analyses of CsgA variants can be seen in Fig. 46. We can notice that the ∆R3

variant aggregates faster than the ∆R2 variant and WT. This may indicate that the R3 region of

CsgA may be responsible for controlling the aggregation process or has no effect on aggregation.

In contrast, the WT and ∆R2 variants of the CsgA protein need more time to aggregate.
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Figure 47: ThT assay of WT and ∆R2 CsgA variants purified with Ni-NTA resin. CsgA

WT protein has concentrations of 0.625, 1.25, 2.5 µM and CsgA R2 0.625, 1.25, 2.5, 5 µM.

A re-analysis of the WT and ∆R2 variants (Fig. 47) confirms our previous observations.

Yet, we were not able to obtain similar concentrations during purification. Nevertheless, the

∆R2 variant aggregated faster than in the previous analysis, which may indicate problems

with the correct purification of the protein in the previous experiment. The WT variant was

characterized by a longer lag phase to start the aggregation process than ∆R2 and showed a

lower fluorescence, which may be related with the later start of the process.

To summarize, the kinetic studies showed that the ∆R1 variant appeared the most aggre-

gating. It may be associated with the regulatory role of R1 region in the aggregation of CsgA

protein. This region can decrease the speed of this process. On the other hand the ∆R4 variant

occurred not as much reactive in aggregation as others, which may suggest that this region is

more important in the aggregation. The ∆R5 is also poorly aggregated and need more time in
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this process. It indicates that this region has also a decisive influence on the aggregation rate.

6.3.2 Atomic Force Microscopy

Figure 48: CsgA WT variant after resuspension under AFM.

Figure 49: CsgA ∆R1 variant after resuspension under AFM.
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Figure 50: CsgA ∆R2 variant after resuspension under AFM.

Figure 51: CsgA ∆R3 variant after resuspension under AFM.
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Figure 52: CsgA ∆R4 variant after resuspension under AFM.

Figure 53: CsgA ∆R5 variant after resuspension under AFM.

Using AFM, we attempted to find amyloid fibrils of individual CsgA protein variants that

were purified with cobalt resin resuspended (Fig. 48-53). Unfortunately, we did not find any

amyloid fibrils. Instead, as shown in Fig. 48, 49, and 52, we observed some kind of oligomeric
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aggregates. The amount of them in ∆R4 variants might indicate that there are problems with

starting aggregation ass our previous observation. There is a lot of building material, but fibrils

do not form. Fig. 51 might present fibrils, but they are quite small.

Figure 54: CsgA R1 variant after 1 week of incubation.

Figure 55: CsgA R4 variant after 1 week of incubation.
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Figure 56: CsgA R4 fibrils after 1 week of incubation.

However, in the case of protein variants purified by Ni-NTA, we were able to find some kind

of fibrils in the ∆R1 and ∆R4 variants, although the fibrils are very small, which is unusual.

In Fig. 54 and 55 one can see clusters of fibrils but also numerous forms, which are probably

oligomeric in the form of larger dots. In Fig. 56 a single fibril is visible, which is much shorter

than amyloid fibrils in the other figures.



7. Comparison of sequence features between functional and non-functional amyloids 115

7 Comparison of sequence features between functional and

non-functional amyloids

7.1 Research objectives

After the detailed analyses of functional amyloids, CsgA and CsgB, we decided to identify

specific sequence characters that could distinguish functional amyloids in general from non-

functional ones. Distinguishing these classes of amyloids can be crucial in verifying whether

the dysfunctional protein plays a role in an organism or is the result of incorrect folding. So

far, computational approaches for the detection of functional amyloids were not elaborated.

Therefore, we compared functional and non-functional amyloids to select features that could be

used in the elaboration of a robust model to distinguish these sequences.

7.2 Materials and Methods

7.2.1 Dataset preparation

We collected functional and non-functional amyloids based on literature and UniProt database

[UniProt Consortium, 2018] searches. These proteins were gathered in Tab. 1, and their se-

quences were downloaded from the UniProt database.

For each protein, we run BLASTP [Camacho et al., 2009] to find homologous sequences in

the UniProt database. In the search, we used default values: matrix auto, filter none, gapped

yes, hits 1000, HSPs per hit All. The scoring matrix was automatically selected according to

the sequence length and is presented in Tab. 22. From each protein, we have chosen up to top

500 significant homologs with very low E-values, 1e-50 and 1e-15, depending on a protein (Tab.

22).

The initial datasets contained 1789 functional and 5963 non-functional amyloid sequences.

We rejected sequences shorter than six amino acids and used CD-HIT [Fu et al., 2012], assuming

a 0.7 threshold and word size 2, to cluster them and remove similar sequences. It resulted in

1214 functional and 941 non-functional amyloids. The functional amyloids were considered as

a positive set and the non-functional ones as a negative set in classification approaches.
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Table 22: List of proteins with their UniProt id used in the designing predictor of
functional amyloids. Matrix and E-value threshold used in the selection of their homologs
were also included.

Protein name UniProt id Matrix E-value

AIMP2 Q13155 BLOSUM62 1e-50

Albumin P02768 BLOSUM62 1e-50

α-crystallin P24623 BLOSUM62 1e-50

α-lactalbumin P00714 BLOSUM62 1e-50

α-S2-casein P02663 BLOSUM62 1e-50

α-synuclein P37377 BLOSUM62 1e-50

Amyloid β P05067 BLOSUM62 1e-50

Apolipoprotein A-I P02647 BLOSUM62 1e-50

Apolipoprotein E P02649 BLOSUM62 1e-50

β-casein P05814 BLOSUM62 1e-50

β-crystallin P53674 BLOSUM62 1e-50

β-lactoglobulin P02754 BLOSUM62 1e-50

β-parvalbumin P20472 BLOSUM62 1e-50

β2-microglobulin P61769 BLOSUM62 1e-50

Bri2 Q9Y287 BLOSUM62 1e-50

CRES O60676 BLOSUM62 1e-50

CsgA P28307 BLOSUM62 1e-50

CsgB P0ABK7 BLOSUM62 1e-50

Cystatin C P21460 BLOSUM62 1e-50

Cytochrome C P00427 BLOSUM62 1e-50

Delta-toxin P0C1V1 BLOSUM62 1e-50

DJ-1 Q9VA37 BLOSUM62 1e-50

FapC C4IN70 BLOSUM62 1e-20

Fibroin P21828 BLOSUM62 1e-50

FUS P35637 BLOSUM62 1e-50

γ-crystallin P07315 BLOSUM62 1e-50

GroES P0A6F9 BLOSUM62 1e-50

HET-s Q03689 BLOSUM62 1e-50

IAPP P10997 BLOSUM62 1e-50

Insulin P01308 BLOSUM62 1e-50

Kappa-casein P07498 BLOSUM62 1e-50

Lysozyme P61626 BLOSUM62 1e-50
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Table 22: List of proteins with their UniProt id used in the designing predictor of
functional amyloids. (Continued). Matrix and E-value threshold used in the selection
of their homologs were also included.

Protein name UniProt id Matrix E-value

Medin (AMed) Q08431 PAM70 1e-50

Myoglobin P02144 BLOSUM62 1e-50

New1 (NU+) Q08972 BLOSUM62 1e-50

p53 P04637 BLOSUM62 1e-50

p73 O15350 BLOSUM62 1e-50

Pmel17 P40967 BLOSUM62 1e-50

Polyglutamine (polyQ) O60828 BLOSUM62 1e-50

proSP-C P11686 BLOSUM62 1e-50

PrP P04156 BLOSUM62 1e-50

PSMα1 A9JX05 PAM30 1e-50

PSMα2 A9JX06 PAM30 1e-50

PSMα3 A9JX07 PAM30 1e-50

PSMα4 A9JX08 PAM30 1e-50

PSMβ1 A0A068FPX1 PAM70 1e-15

PSMβ2 A0A068FLK9 PAM70 1e-15

Rnq1 P25367 BLOSUM62 1e-50

S100A9 P06702 BLOSUM62 1e-50

Sericin P07856 BLOSUM62 1e-50

Serum amyloid A P0DJI8 BLOSUM62 1e-50

Sup35 P05453 BLOSUM62 1e-50

Tau P10636 BLOSUM62 1e-50

TDP-43 Q13148 BLOSUM62 1e-50

Transthyretin P02766 BLOSUM62 1e-50

Tubulin P0DPH7 BLOSUM62 1e-50

7.2.2 Sequence descriptors

For each sequence, we calculated several descriptors (features), i.e. various numerical repre-

sentation schemes: amino acid composition (AAC), dipeptide composition (DC), AAindex, Nor-

malized Moreau-Broto Autocorrelation (MoreauBroto), Moran Autocorrelation (Moran), Geary

Autocorrelation (Geary), Composition (CTDC), Transition (CTDT), Distribution (CTDD),

Conjoint Triad (CTriad), Sequence-Order-Coupling Number (SOCN), Quasi-Sequence-Order
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Descriptors (QSO), Pseudo-Amino Acid Composition (PAAC) and Amphiphilic Pseudo-Amino

Acid Composition (APAAC).

AAindex is set of numerical indices representing various physicochemical and biochemical

properties of amino acids [Kawashima et al., 2008]. Autocorrelation descriptors (MoreauBroto,

Moran and Geary) are defined based on the distribution of amino acid properties along the

sequence using various types of amino acid indices. CTDC, CTDT and CTDD use amino

acids grouped into classes based on hydrophobicity, normalized van der Waals volume, polarity

and polarizability. They calculate their composition, transition and distribution in a sequence.

CTriad was applied to model protein-protein interactions based on the classification of amino

acids [Shen et al., 2007]. In this case, each protein sequence is represented by a vector space

consisting of descriptors of amino acids, which are clustered into several classes according to their

dipoles and volumes of the side chains. SOCN and QSO were derived from the distance matrices

between amino acids, i.e. Schneider-Wrede physicochemical distance matrix [Schneider and

Wrede, 1994] and Grantham chemical distance matrix [Grantham, 1974]. PAAC and APAAC

use the original hydrophobicity values, the original hydrophilicity values and the original side

chain masses of amino acids.

Since many indices from AAIndex database can be redundant, we removed the highly corre-

lated indices for discriminant and prediction analyses assuming the correlation coefficient thresh-

old 0.8 and the variance inflation factor (VIF) as the criterion for excluding variables among

those that are correlated. Thereby, the number of the indices was reduced from 544 to 74. In the

calculation of descriptors MoreauBroto, Moran and Geary, we assumed the following properties:

CIDH920105 (Normalized Average Hydrophobicity Scales), BHAR880101 (Average Flexibility

Indices), CHAM820101 (Polarizability Parameter), CHAM820102 (Free Energy of Solution in

Water), CHOC760101 (Residue Accessible Surface Area in Tripeptide), BIGC670101 (Residue

Volume) and CHAM810101 (Steric Parameter). Moreover, we applied the value of 15 for the

maximum lag in the case of descriptors MoreauBroto, Moran, Geary, SOCN and QSO as well as

for the lambda in PAAC and APAAC. These descriptors include relations between properties of

amino acids located in various distances (defined by the lag and lambda) in a studied sequence.
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7.2.3 Statistical and prediction analyses

Differences between the functional and non-functional amyloids in selected features were

compared in the non-parametric unpaired Wilcoxon test. We applied the Bonferroni method

to correct the p-value due to multiple testing. P-values smaller than 0.05 were regarded as

statistically significant. Due to the multidimensionality of data, the data set was studied and

visualized in Correspondence Analysis (CA) and Principal Component Analysis (PCA), where

the variables were scaled to the unit variance. Moreover, we applied Linear Discriminant Anal-

ysis (LDA) to find a linear combination of features that characterizes and separates the studied

protein sequences. Before conducting LDA, we removed highly correlated variables with a corre-

lation coefficient > |0.8| and the highest VIF. Moreover, we normalized the variables by applying

the best normalizing transformations on the basis of the Pearson P test statistic for normality.

For selected descriptors based on the LDA results, we build a random forest classification

model to classify these two types of proteins. We conducted 100 runs of the model splitting

randomly the data into a training set and a test set in the ratio of 3:1. For each iteration,

we individually searched for the optimal value (with respect to Out-of-Bag error estimate) of

mtry, i.e. the number of variables randomly sampled as candidates at each split. We assumed

the number of trees to grow for 1000. The model was learned on the training set with 5-fold

cross-validation. Finally, the tested set was predicted using the trained model.

Based on the 100 iterations, the mean, the minimum and the maximum of the following

measures were calculated, both for the cross-validation and predicting step: precision (PRE),

sensitivity (SEN), specificity (SPE), accuracy (ACC), Matthews correlation coefficient (MCC)

and AUC (area under the receiver operating characteristic curve).

The parameters are expressed by the formulas:

PRE =
TP

(TP + FP )

SEN =
TP

(TP + FN)

SPE =
TN

(TN + FP )
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ACC =
TP + TN

(TP + FP + TN + FN)

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FN) ∗ (TN + FP ) ∗ (TP + FP ) ∗ (TN + FN)

where TP is the number of true positives, FP is the number of false positives, TN is the

number of true negatives and FN is the number of false negatives.

Sensitivity is also called recall or true positive rate (TPR), whereas specificity is also named

true negative rate (TNR). AUC corresponds to the area under the receiver operating charac-

teristic curve depicted in a plot of the sensitivity against the false positive rate (FPR), i.e. (1

−specificity) at various threshold settings. AUC is a statistics that is used in the comparison

of different models. MCC is generally regarded as a balanced measure that can be used even if

the classes are of very different sizes and is used to measure the quality of classifications. MCC

takes values from -1 to 1, whereas the other measures from 0 to 1. The higher the values, the

better the model distinguishes the analyzed groups.

The analyses were conducted in R software [RStudio Team, 2020] using various packages:

stats, bestNormalize [Peterson, 2021], bio3d [Grant et al., 2021], fuzzySim [Barbosa, 2015],

FactoMineR [Lê et al., 2008], MASS [Venables and Ripley, 2002], protr [Xiao et al., 2015],

randomForest [Cutler and Wiener, 2022] and seqinr [Charif et al., 2022].

7.3 Results

7.3.1 Statistical analyses

Easily interpretable descriptors such as amino acid composition (AAC), dipeptide composi-

tion (DC) and AAindex were subjected to statistical testing. The functional and non-functional

amyloids differ significantly in the composition of 17 amino acid residues: R, M, K, T, H, S, C,

Y, L, Q, P, E, F, W, D, N and V. The functional amyloid sequences are characterized by a higher

content of small hydroxylated residues, threonine and serine (Fig. 57). Considering mean values

for the whole set, the frequency of T and S was 2 and 2.5 times higher in functional amyloids.

In turn, non-functional amyloids show 1.5 to almost 1.8 times increase in basic lysine, arginine

and histidine, aromatic tryptophan and tyrosine as well as sulphur-containing methionine and

cysteine.
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Figure 57: Box-plots of amino acid composition in functional amyloids (FA) and non-

functional amyloids (NFA). The thick line indicates the median, the box shows the quartile range

and the whiskers denote the range without outliers.



7.3 Results 122

CA (Correspondence Analysis) and PCA (Principal Component Analysis) quite well sepa-

rate the compared amyloid proteins (Fig. 58). In the plots for two principal coordinates or

components explaining the largest fraction of variance, we can notice two main sets separated

by the first coordinate. A bigger set contains exclusively functional amyloids and the second

comprises both types of proteins. There is also a small group isolated by the second principal

component. In the case of CA, this group includes only non-functional amyloids but in PCA,

the representatives of both amyloid proteins are present. In the results of CA (Tab. 23), the

largest weights in the separation revealed serine, alanine, glycine and threonine. In PCA, the

most positively correlated variables with the first component are leucine, methionine, pheny-

lalanine, lysine, arginine, tyrosine, tryptophan and cysteine, whereas high negative correlation

coefficients show serine and threonine. Considering the second component, the highest positive

correlation is demonstrated by glycine and negative by valine.
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Figure 58: Correspondence Analysis (CA) and Principal Component Analysis (PCA) of

functional amyloids (FA) and non-functional amyloids (NFA) for amino acid composi-

tion.
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Table 23: Weights from Correspondence Analysis and correlation coefficients with
two components (CC1 and CC2) from Principal Component Analysis for the
amino acid composition of functional amyloids and non-functional amyloids.

Amino acid Weights CC1 CC2

A 0.082 -0.19 -0.47

C 0.018 0.52 0.16

D 0.050 0.13 -0.17

E 0.057 0.43 -0.35

F 0.029 0.63 0.05

G 0.080 -0.33 0.52

H 0.019 0.42 0.34

I 0.039 0.44 -0.28

K 0.046 0.60 -0.29

L 0.073 0.76 -0.24

M 0.018 0.68 0.05

N 0.042 -0.08 0.30

P 0.052 0.22 -0.02

Q 0.041 0.31 0.41

R 0.043 0.59 0.29

S 0.134 -0.83 0.13

T 0.079 -0.63 -0.18

V 0.061 0.36 -0.54

W 0.011 0.52 0.21

Y 0.026 0.53 0.48

In the case of dipeptide content, 215 out of 400 parameters occurred statistically significant

between the compared protein sequences. The functional amyloids are characterized on average

by a high increase in dipeptides containing serine and threonine but also VW dipeptide, whereas

non-functional amyloids by dipeptides, which are rich in cysteine, aspartic acid, methionine,

arginine and histidine (Tab. 24).
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Table 24: Selected dipeptides whose mean frequency was at least 2.5 times higher
in a given amyloid group and the difference was statistically significant.

Dipeptide Ratio of means Group

WV 3.7 non-functional amyloids

PM 3.5 non-functional amyloids

CA 3.4 non-functional amyloids

RG 3.2 non-functional amyloids

FH 3.1 non-functional amyloids

MD 3.1 non-functional amyloids

FQ 3.0 non-functional amyloids

RC 2.9 non-functional amyloids

WC 2.9 non-functional amyloids

ER 2.9 non-functional amyloids

IC 2.9 non-functional amyloids

CK 2.7 non-functional amyloids

HP 2.7 non-functional amyloids

MC 2.7 non-functional amyloids

DM 2.7 non-functional amyloids

KH 2.7 non-functional amyloids

DY 2.6 non-functional amyloids

YE 2.6 non-functional amyloids

DR 2.5 non-functional amyloids

SS 5.8 functional amyloids

TT 5.8 functional amyloids

ST 5.6 functional amyloids

TS 5.2 functional amyloids

SG 3.1 functional amyloids

SA 3.0 functional amyloids

AS 3.0 functional amyloids

DS 2.9 functional amyloids

GS 2.9 functional amyloids

TG 2.9 functional amyloids

SN 2.7 functional amyloids

VW 2.5 functional amyloids

CA and PCA plots for the dipeptide composition also clearly distinguish many functional
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amyloids but some of them are still grouped with non-functional ones according to the first

principal component (Fig. 59). In PCA, we can also notice the differentiation of non-functional

amyloids according to the second component. In Tab. 25, we selected dipeptides showing the

highest weights and/or correlations with two components. Most often, they are combinations

of serine, leucine, glycine, alanine, and threonine.
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Figure 59: Correspondence Analysis (CA) and Principal Component Analysis (PCA) of

functional amyloids (FA) and non-functional amyloids (NFA) for dipeptide composition.
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Table 25: Weights from Correspondence Analysis and correlation coefficients with
two components (CC1 and CC2) from Principal Component Analysis for selected
dipeptides of functional and non-functional amyloids.

Dipeptide Weights CC1 CC2

AA 0.010 -0.17 -0.13

AS 0.010 -0.48 -0.05

AW 0.001 0.24 0.51

CN 0.001 0.19 0.55

EL 0.004 0.53 -0.15

FL 0.003 0.45 0.06

GC 0.001 0.23 0.54

GG 0.009 -0.24 0.18

GS 0.014 -0.53 0.15

LE 0.004 0.49 -0.26

LK 0.004 0.46 -0.20

LL 0.008 0.54 0.05

LS 0.007 0.00 -0.05

SA 0.010 -0.46 -0.04

SG 0.013 -0.48 0.17

SS 0.033 -0.57 0.05

ST 0.016 -0.60 -0.03

TG 0.006 -0.41 -0.01

TS 0.013 -0.56 -0.06

TT 0.011 -0.44 -0.07

AAindex measures also occurred to differentiate the studied amyloids (Tab. 26). The most

distinguishing indices cover various physicochemical properties including secondary structure.

Among them, there are weights for β-sheet and coil structures, optimized relative partition

energies, information measure for loop and turn, as well as scales for hydrophobicity, polarity

and net charge. Functional amyloids showed larger mean values for optimized relative partition

energies as well as indices for β-sheet, turn and loop, whereas non-functional amyloids for

hydrophobicity, net charge and weights for coil region. Due to reverse scaling, high values in

RADA880108 index mean that a given amino acid is in fact hydrophobic.
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Table 26: Selected amino acid indices that showed the largest percentage dif-
ference between mean values calculated for functional amyloids (FA) and non-
functional amyloids (NFA) and significantly differentiate these groups.

AAIndex Description Mean
for NFA

Mean
for FA

QIAN880116 Weights for β-sheet at the window position of -4 -0.0575 0.0005

BAEK050101 Linker index -0.0003 -0.0244

ROBB760108 Information measure for turn -0.3310 0.0063

KLEP840101 Net charge -0.0007 -0.0308

QIAN880125 Weights for β-sheet at the window position of 5 -0.0019 0.0779

MIYS990104 Optimized relative partition energies - method C -0.0208 0.0007

QIAN880114 Weights for β-sheet at the window position of -6 -0.0024 0.0720

ROBB760109 Information measure for N-terminal turn -0.0072 0.1283

CIDH920103 Normalized hydrophobicity scales for α+β-proteins -0.0082 -0.1598

MIYS990105 Optimized relative partition energies - method D -0.0178 0.0012

QIAN880139 Weights for coil at the window position of 6 0.0572 0.0040

MIYS990103 Optimized relative partition energies - method B -0.0186 -0.0016

NAKH900106 Normalized composition from animal -0.0057 0.0550

COWR900101 Hydrophobicity index, 3.0 pH 0.0771 0.0073

QIAN880126 Weights for β-sheet at the window position of 6 0.0135 0.1027

RADA880108 Mean polarity 0.0137 -0.0696

ROBB760113 Information measure for loop -0.3106 0.0723

CIDH920101 Normalized hydrophobicity scales for α-proteins -0.0385 -0.2386

QIAN880138 Weights for coil at the window position of 5 0.0419 -0.0107

QIAN880137 Weights for coil at the window position of 4 -0.0072 -0.0416

PCA performed for amino acid indices also separated two groups, although the distance

between them is smaller than in the case of amino acid and dipeptide compositions (Fig. 60).

Most functional amyloids are in one group, but others overlap non-functional ones. In contrast

to the plots for the compositions, the two groups have comparable ranges in the plot. Amino acid

indices the most correlated with the principal components are associated with various features

related for example to secondary structures, especially for β-sheets, hydrophobicity, buriability

and protein stability (Tab. 27).
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Figure 60: Principal Component Analysis of functional amyloids (FA) and non-functional

amyloids (NFA) for selected amino acid indices.
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Table 27: Correlation coefficients with two components (CC1 and CC2) from
Principal Component Analysis for selected amino acid indices calculated for func-
tional and non-functional amyloids.

AAIndex CC1 CC2 Description

BASU050101 0.98 0.16 Interactivity scale obtained from the contact matrix
BASU050102 0.98 0.07 Interactivity scale obtained by maximizing the mean of cor-

relation coefficient over single-domain globular proteins
CHOP780203 -0.97 -0.05 Normalized frequency of β-turn
CHOP780211 -0.97 0.12 Normalized frequency of C-terminal non β region
CIDH920102 0.97 -0.02 Normalized hydrophobicity scales for β-proteins
CIDH920105 0.97 0.06 Normalized average hydrophobicity scales
DESM900102 0.12 0.96 Average membrane preference: AMP07
GEIM800111 -0.98 0.04 Aperiodic indices for α/β-proteins
GUOD860101 0.97 0.12 Retention coefficient at pH 2
MEIH800101 -0.97 -0.14 Average reduced distance for C-α
MIYS990101 -0.97 -0.16 Relative partition energies derived by the Bethe approxi-

mation
OOBM770101 -0.09 -0.95 Average non-bonded energy per atom
PARJ860101 -0.97 -0.11 HPLC parameter
PLIV810101 0.97 0.08 Partition coefficient
RACS770101 -0.98 -0.01 Average reduced distance for C-α
SUEM840101 0.97 -0.13 Zimm-Bragg parameter s at 20 C
TAKK010101 0.97 -0.04 Side-chain contribution to protein stability (kJ/mol)
VINM940102 -0.97 -0.04 Normalized flexibility parameters (B-values) for each

residue surrounded by none rigid neighbours
ZHOH040101 0.97 -0.05 The stability scale from the knowledge-based atom-atom

potential
ZHOH040103 0.97 0.15 Buriability

7.3.2 Discriminant analysis

The application of LDA (Linear Discriminant Analysis) showed a variable accuracy of clas-

sification depending on the used descriptors (Tab. 28). SOCN was excluded from the study

because all variables occurred too highly correlated. The accuracy was the smallest for More-

auBroto (0.69) and basic composition descriptors, i.e. CTDC, CTDT and AAC (0.70 to 0.80).
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The best discriminator appeared dipeptide composition (DC) with an accuracy of almost 0.99.

At the top, there were also CTriad, AAindex and APAAC (0.96 – 0.90).

Table 28: Accuracy obtained in Linear Discriminant for various protein sequence
descriptors for functional and non-functional amyloids. The numbers of initial
variables and those after the exclusion of the most correlated were also presented.

Descriptor Initial number of pa-
rameters

Number of parameters
without correlated

Accuracy

DC 400 396 0.986
CTriad 343 342 0.958
AAindex 544 74 0.898
APAAC 50 49 0.890
QSO 70 48 0.872
Moran 105 75 0.850
Geary 105 75 0.850
PAAC 35 21 0.846
CTDD 105 69 0.844
AAC 20 20 0.805
CTDT 21 14 0.735
CTDC 21 8 0.705
MoreauBroto 105 6 0.693
AAC - amino acid composition, APAAC - Amphiphilic Pseudo-Amino Acid Composition, CTDC -

Composition, CTDD - Distribution, CTDT - Transition, CTriad - Conjoint Triad, DC - dipeptide composition,
Geary - Geary Autocorrelation, Moran - Moran Autocorrelation, MoreauBroto - Normalized Moreau-Broto

Autocorrelation, PAAC - Pseudo-Amino Acid Composition, QSO - Quasi-Sequence-Order Descriptors

LDA identified only one discriminant function for each of the descriptors. Histograms for

this function and selected descriptors are presented in Fig. 61. In terms of amino acid com-

position, shown for comparison, the functional and non-functional amyloids are rather poorly

separated and characterized by a large overlap in the distribution of function values. Much bet-

ter separation is visible for amino acid indices, whereas the best one for CTriad and dipeptide

composition. In the case of dipeptide composition, the most positively correlated (0.17 to 0.12)

with the discriminant function occurred dipeptides ST, TT, AS, SA SS, AT, NG, TG, and NT,

whereas the most negatively correlated (-0.16 to -0.12) RG, FQ, ER, AK, DY, CA, KV, LK,

and MD. The correlation coefficients of amino acid indices with the discriminant function are
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larger in terms of absolute value (Tab. 29). Among these indices, there are those related to the

free energy of protein conformation as well as secondary structures: β-sheet, coil regions, and

helix.

Figure 61: Histograms for discriminant function and selected descriptors calculated for

functional and non-functional amyloids.
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Table 29: Correlation coefficient (CC) with discriminant function for selected
amino acid indices calculated for functional and non-functional amyloids.

AAIndex CC Description

WERD780102 -0.470 Free energy change of epsilon(i) to epsilon(ex)
CHAM830102 -0.441 A parameter defined from the residuals obtained from

the best correlation of the Chou-Fasman parameter of
β-sheet

NAKH900103 -0.412 AA composition of mt-proteins
WERD780103 -0.386 Free energy change of α(Ri) to α(Rh)
TANS770108 -0.306 Normalized frequency of zeta R
LAWE840101 0.302 Transfer free energy, CHP/water
ROSM880103 0.308 Loss of Side chain hydropathy by helix formation
QIAN880137 0.382 Weights for coil at the window position of 4
RICJ880116 0.421 Relative preference value at C’
CHAM830108 0.452 A parameter of charge transfer donor capability

To summarize, the results of the statistical and discriminant analyses indicate that func-

tional and non-functional amyloids show many sequence features that can differentiate them.

However, CA and PCA plots demonstrated that the functional amyloids are clearly a hetero-

geneous group, which can be separated into two sets. The non-functional amyloids are not

fully homogenous, either, and some smaller subgroups can be recognized. Nevertheless, there

are distinctive features that discriminate these sets. Taking together of the results, we can say

that functional amyloids are characterized by a high content of amino acids S and T, as well as

dipeptides ST, TS, TT, SS, AS, SA, SG, TG, AT, GS, SN, GT and DS. In turn, non-functional

amyloids are rich in R, K, M, L, C, H and Y as well as LK, AK, KV, LL, RV, FQ, ER, KE, EL,

EK, VR, LR and DL. Larger values of amino acid indices for functional amyloids are associated

mainly with loop, turn, flexibility, β-sheet, β-turn, β region, optimized relative partition en-

ergies, whereas those for non-functional amyloids with buriability, hydrophobicity, net charge,

protein stability and free energy change.
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7.3.3 Prediction analyses using random forest

Based on the LDA results, we selected the most promising descriptions to verify their use-

fulness in a random forest model. To this study, we selected three top descriptors, i.e. DC,

CTriad and AAindex as well as APAAC, which was characterized by the smallest number of

parameters.

To assess how accurately the predictive model can perform in practice, we conducted five-

fold cross-validation by dividing functional amyloid and non-amyloid training data sets into five

groups, four training and one tested. This assessment is presented in Tab. 30. Generally, the

values of all the applied measures were higher than 0.8 and mostly 0.9. Dipeptide composition

occurred as the best predicting feature in terms of precision (mean 0.983), specificity (mean

0.979) and AUC (mean 0.996), whereas AAIndex for sensitivity (mean 0.961), accuracy (mean

0.962) and MCC (mean 0.922). CTriad and APAAC descriptions appeared weaker.

Table 30: Cross-validation results for random forest model based on selected de-
scriptors in the prediction of functional and non-functional amyloids. The highest
value for a given measure was bolded. The mean as well as the minimum and the maximum
values in parentheses calculated for 100 runs were also presented.

Measure DC AAIndex CTriad APAAC

Precision 0.983 [0.976-0.988] 0.970 [0.962-0.978] 0.979 [0.972-0.987] 0.968 [0.957-0.977]
Sensitivity 0.945 [0.926-0.963] 0.961 [0.955-0.969] 0.887 [0.862-0.907] 0.938 [0.930-0.947]
Specificity 0.979 [0.970-0.986] 0.962 [0.950-0.972] 0.975 [0.965-0.985] 0.960 [0.947-0.972]
Accuracy 0.960 [0.949-0.970] 0.962 [0.956-0.968] 0.926 [0.909-0.934] 0.948 [0.939-0.953]
AUC 0.996 [0.994-0.997] 0.992 [0.991-0.994] 0.988 [0.986-0.991] 0.990 [0.987-0.991]
MCC 0.920 [0.898-0.939] 0.922 [0.911-0.936] 0.856 [0.825-0.870] 0.894 [0.878-0.905]

APAAC - Amphiphilic Pseudo-Amino Acid Composition, CTriad - Conjoint Triad, DC - dipeptide composition

Next, we tested the model based on an independent set. The predictions turned out very

good (Tab. 31). The measures varied from 0.796 to 0.996. Dipeptide composition and amino

acid indices outperformed other descriptors. DC achieved the highest mean sensitivity (0.980)

and AUC (0.962), whereas AAIndex precision (0.950), specificity (0.961), accuracy (0.961) and

MCC (0.922).
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Table 31: Performance of random forest model based on selected descriptors in
the prediction of functional and non-functional amyloids. The highest value for a
given measure was bolded. The mean as well as the minimum and the maximum values in
parentheses calculated for 100 runs were also presented.

Measure DC AAIndex CTriad APAAC

Precision 0.932 [0.874-0.980] 0.950 [0.914-0.976] 0.871 [0.808-0.938] 0.922 [0.863-0.959]
Sensitivity 0.980 [0.945-0.996] 0.962 [0.923-0.995] 0.974 [0.945-0.996] 0.962 [0.907-0.991]
Specificity 0.944 [0.893-0.984] 0.961 [0.930-0.980] 0.889 [0.848-0.952] 0.937 [0.892-0.967]
Accuracy 0.960 [0.933-0.987] 0.961 [0.935-0.980] 0.926 [0.894-0.963] 0.948 [0.920-0.968]
AUC 0.962 [0.936-0.987] 0.961 [0.933-0.981] 0.931 [0.906-0.965] 0.950 [0.920-0.969]
MCC 0.920 [0.868-0.974] 0.922 [0.866-0.959] 0.856 [0.796-0.925] 0.896 [0.839-0.937]

APAAC - Amphiphilic Pseudo-Amino Acid Composition, CTriad - Conjoint Triad, DC - dipeptide composition

In Tab. 32 and Tab. 33, we selected the top twenty dipeptides that showed the largest

importance for random forest classification. Their importance was assessed by two measures:

Mean Decrease Accuracy, which describes how much the model accuracy decreases if we drop

a given variable, and Mean Decrease Gini, which is based on the Gini impurity index used for

the calculation of splits in trees and describes the inconsistency of classification by nodes in

trees. Twelve dipeptides were chosen at the same time by these two criteria: AK, CA, DI,

ER, FQ, HP, NG, PG, RG, SS, ST and TS. The dipeptides selected by these two criteria are a

combination of mainly serine, threonine, glycine, arginine, alanine and isoleucine.
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Table 32: Top twenty dipeptides that showed the biggest Mean Decrease in Accu-
racy in random forest prediction of functional and non-functional amyloids. The
mean as well as the minimum and the maximum of this measure calculated for 100 runs were
presented.

Dipeptide Mean [Min-Max]

SS 20.98 [13.72-35.02]
RG 18.12 [14.18-24.77]
ST 15.82 [11.42-22.1]
NG 15.23 [12.01-22.57]
CA 15.05 [11.16-19.71]
FQ 14.92 [11.85-19.48]
ER 13.83 [10.85-17.43]
TS 13.7 [11.06-16.66]
PG 13.68 [10.85-15.93]
DI 13.54 [10.11-20.26]
GS 12.4 [9.34-15.94]
IC 11.73 [9.03-16.98]
TT 11.57 [9.34-14.8]
SG 11.52 [8.97-14.25]
AK 11.49 [8.29-14.26]
SA 11.39 [9.37-14.66]
HP 10.96 [8.01-13.59]
IE 10.88 [8.41-15.29]
MD 10.87 [8.67-13.24]
AS 10.71 [8.87-13.36]
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Table 33: Top twenty dipeptides that showed the biggest Mean Decrease in Gini
in random forest prediction of functional and non-functional amyloids. The mean
as well as the minimum and the maximum of this measure calculated for 100 runs were
presented.

Dipeptide Mean [Min-Max]

SS 26.51 [12.2-56.74]
RG 21.14 [10.89-38.32]
NG 17.92 [9.69-38.28]
ST 17.29 [9.32-31.78]
FQ 14.5 [8.58-24]
ER 12.09 [6.66-18.71]
CA 11.38 [6.44-19.9]
TS 10.56 [6.89-16.07]
DI 9.47 [5.02-18.45]
PG 9.4 [5.73-15.09]
AK 9.12 [3.99-16.44]
SI 7.75 [3.41-12.6]
RR 6.89 [3.51-18.43]
RV 6.32 [2.11-12.2]
NT 6.32 [2.61-11.76]
KV 6.04 [2.34-10.11]
VW 6.02 [2.97-12.57]
TY 5.84 [3.07-10.12]
DT 5.55 [2.06-10.47]
HP 5.52 [2.58-9.22]

Likewise, we gather the top twenty amino acid indices that turned out the most important

in the prediction (Tab. 34 and 35). Twelve indices were also agreeably chosen by these two cri-

teria: AURR980118, CHAM830104, CHAM830105, DAYM780201, EISD860102, FAUJ880111,

GRAR740101, LIFS790102, MITS020101,l NAKH900103, PONP800104 and QIAN880122. The

indices selected by these two criteria refer mostly to parameters of the side chain, hydropho-

bicity, amphiphilicity, and charge as well as various protein conformations and structures, i.e.

α-helix, β-strand, β-sheet and coil.
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Table 34: Top twenty amino acid indices that showed the biggest Mean Decrease
Accuracy in random forest prediction of functional and non-functional amyloids.
The mean as well as the minimum and the maximum of this measure calculated for 100 runs
were presented.

AAIndex Description Mean [Min-Max]

AURR980118 Normalized positional residue frequency at helix termini
C"

17.83 [12.92-27.08]

GRAR740101 Composition 17.81 [13.77-26.92]
PONP800104 Surrounding hydrophobicity in α-helix 17.74 [13.96-25.57]
CHAM830105 The number of atoms in the side chain labelled 3+1 16.6 [13.54-21.53]
MITS020101 Amphiphilicity index 15.39 [12.19-18.87]
FAUJ880110 Number of full nonbonding orbitals 15.29 [12.56-20.63]
EISD860102 Atom-based hydrophobic moment 14.95 [13.48-17.47]
DAYM780201 Relative mutability 14.79 [11.71-18.37]
NAKH900103 AA composition of mt-proteins 14.78 [12.04-17.46]
FAUJ880111 Positive charge 14.6 [12.47-16.86]
SUYM030101 Linker propensity index 14.45 [12.47-16.67]
FAUJ880105 STERIMOL minimum width of the side chain 14.29 [12.68-16.83]
QIAN880122 Weights for β-sheet at the window position of 2 14.12 [12.34-16.23]
TANS770108 Normalized frequency of zeta R 13.94 [11.8-17.25]
LIFS790102 Conformational preference for parallel β-strands 13.92 [11.62-16.28]
FASG760102 Melting point 13.86 [11.36-17.87]
AURR980106 Normalized positional residue frequency at helix termini

N1
13.76 [11.78-15.55]

CRAJ730102 Normalized frequency of β-sheet 13.73 [11.02-17.72]
CHAM830104 The number of atoms in the side chain labelled 2+1 13.69 [12.13-15.76]
ISOY800106 Normalized relative frequency of helix end 13.54 [11.45-16.1]
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Table 35: Top twenty amino acid indices that showed the biggest Mean Decrease
in Gini in random forest prediction of functional and non-functional amyloids.
The mean as well as the minimum and the maximum of this measure calculated for 100 runs
were presented.

AAIndex Description Mean [Min-Max]

AURR980118 Normalized positional residue frequency at helix termini
C"

27.08 [11.74-71.18]

CHAM830105 The number of atoms in the side chain labelled 3+1 22.45 [13.48-46.25]
MITS020101 Amphiphilicity index 20.12 [10.78-41.48]
DAYM780201 Relative mutability 18.98 [10.2-36.24]
FAUJ880111 Positive charge 18.53 [10.2-29.66]
EISD860102 Atom-based hydrophobic moment 14.5 [9.33-21.13]
QIAN880129 Weights for coil at the window position of -4 12.77 [8.13-18.02]
GRAR740101 Composition 12.19 [8.68-22.5]
QIAN880123 Weights for β-sheet at the window position of 3 11.87 [7.65-17.9]
CHAM830104 The number of atoms in the side chain labelled 2+1 11.6 [6.54-15.18]
SNEP660103 Principal component III 10.91 [7.2-14.86]
PONP800104 Surrounding hydrophobicity in α-helix 9.94 [6.7-16.51]
AURR980120 Normalized positional residue frequency at helix termini

C4’
9.81 [5.99-13.74]

NAKH900103 AA composition of mt-proteins 9.5 [6.38-13.23]
LIFS790102 Conformational preference for parallel β-strands 8.81 [6.03-13.9]
SNEP660104 Principal component IV 8.75 [4.65-12.27]
FAUJ880104 STERIMOL length of the side chain 8.64 [4.72-11.64]
QIAN880122 Weights for β-sheet at the window position of 2 8.34 [6.12-11.71]
OOBM770102 Short and medium range non-bonded energy per atom 8.22 [3.66-11.24]
QIAN880139 Weights for coil at the window position of 6 7.78 [5.16-11.48]
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8 AmyloGraph - amyloid interaction database

8.1 Research objectives

Due to the lack of databases containing standardized descriptions of amyloid interactions,

including proteins under this study, i.e., CsgA and CsgB, we decided to create a database

to fill this gap. In our work on AmyloGraph [Burdukiewicz et al., 2022], we designed detailed

definitions of amyloid interactions (Fig. 62). Six of them deal with amyloid-amyloid interactions

and assume that there are only two participants in each interaction and that the interactor

modulates the self-assembly of the interactee. We have also developed three descriptors to more

rigorously describe the details of the scenarios, which provide specific determinations of possible

states. We also would like to emphasize that the designed descriptors do not replace existing

terminology, but rather standardize it.

Interactee monomers

monomers oligomers fibrilsInteractor or or

I

No interaction, interactee and interactor form fibrils independently.

Fibrils are formed at slower speed or not at all. Transient contacts inhibit fibrilization.

Fibrils are formed at slower speed or not at all. Physical binding inhibits fibrilization.

Transient contacts accelerate fibrilization.

Physical binding accelerate fibrilization.

Creation of heterogeneous fibrils.

II

III

IV

V

VI

Impact on the speed of interactee fibrilization

faster aggregation

slower aggregation

no aggregation

no effect

no information

Physical binding between interactee and interactor

yes, direct evidence

yes, implied by kinetics

no

formation of fibrils by the interactee is inhibited

Presence of the heterogenous fibrils

yes

no

no information

A B

Figure 62: Definitions of amyloid interactions developed for the AmyloGraph. A) Six

scenarios of amyloid-amyloid interactions. Colors represent different amyloid molecules taking a part

in the interactions. Roman numerals denote different interaction scenarios. B) Three descriptors of

AmyloGraph. Grey rectangles represent descriptors, blue rectangles with round edges represent the

levels of the descriptor above.
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8.2 Materials and Methods

8.2.1 Systematization of terminology on interactions between amyloids

We created a precisely controlled vocabulary to describe the amyloid-amyloid interactions.

We assumed that there are only two participants in each interaction, interaction and interactee.

Next, we developed three categories of descriptors to better describe the interaction. They

were based on the fibrilization speed, the presence of physical binding between both interacting

proteins, and the appearance of heterogeneous fibrils (Fig. 62B).

Descriptors for fibrilization speed:

• 1. Faster aggregation:

– a) the maximum ThT emission of the reaction of the interactee and interactor is

higher than the emission for the interactee alone.

– b) the slope of the kinetic curve is steeper.

– c) the lag phase is shorter.

– d) the time required for the amyloid reaction to reach 50% of the final fluorescence

intensity is lower.

• 2. Slower aggregation:

– a) the maximum ThT emission observed at the end of the reaction of the interactee

and interactor is lower than the emission for the interactee alone.

– b) the slope of the kinetic curve is less steep.

– c) the lag phase is longer.

• 3. No aggregation:

– a) there is no confirmed fibrilization after the interaction.

• 4. No effect:

– a) the slopes of kinetic curves are similar.

– b) the maximum ThT emission is similar.
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– c) the lag phase is similar.

• 5. No information:

– a) there were no kinetic assays.

Descriptors for physical binding between interactee and interactor. Are there physical bonds

between interactee and interactor?:

• 1. Yes, direct evidence:

– a) there is experimental evidence that fibrils consist of two different amyloids.

– b) there is a visible colocalization of an interactee and an interactor in microscopic

images.

• 2. Yes, implied by kinetics:

– a) seeding is implied by kinetic experiments results and is interpreted as such by the

authors of the publication.

• 3. No:

– a) there is no effect on the elongation of interactees fibrils.

• 4. Formation of fibrils by the interactee is inhibited:

– a) the formation of interactees aggregates was slowed or halted by the interactor.

• 5. No information:

– a) there is no experimental evidence, the seeding is not implied by kinetic experiments

results.

Descriptors for indicating the presence of the heterogenous fibrils, which consist of inter-

actor and interactee molecules. Are heterogenous fibrils formed, composed of interactor and

interactee?:

• 1. Yes:
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– a) experimental evidence that fibrils consist of two different amyloids

– b) the mature fibrils are structurally different from fibrils formed in the presence of

an interactor

– c) the term coaggregation, heterogeneous or hybrid fibrils is used to describe the

aggregation process.

• 2. No, amyloid fibrils have the same dimension, which matches interactee alone:

– a) the same structure of interactee and interactor fibrils confirmed by a microscopy

technique.

– b) there are no fibrils at all.

– c) interactee and interactor are the same protein.

• 3. No information:

– a) no experimental evidence, seeding not implied by kinetic experiments.

8.2.2 Datasets preparation and curation

In order to create the interaction database, we needed to collect the data and curate it.

We have designed a three-stage pipeline, which includes the pre-screen of manuscripts, manual

curation, and independent final validation. The first two steps have been supported through

the design of the applicable forms, which standardized annotations. We managed to expand the

collection of many publications, and through labor-intensive efforts. In total, we analyzed 562

manuscripts. However, only 364 were potentially suitable for the database.

Having the collected manuscripts and data, we, along with other curators, attempted to

manually curate the database. We extracted information on amyloid interactions from each

paper, without reinterpreting the data and conclusions provided by their authors, except when

the authors did not describe the results or the description was limited. During the initial data

curation, we focused on annotating the manuscripts using the descriptors and collecting protein

sequences of interacting amyloids. The next step was the validation of our annotations by

other curators, who were not involved in the validation of a specific record during the initial
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curation. The final collections of manuscripts consisted of 172 publications and 883 amyloid-

amyloid interactions. Then, we tried to contact the authors of the publications to validate our

database entries, however, only 11 of them responded, confirming 81 interactions.

8.2.3 R package, shiny web server, and the database

AmyloGraph is available as an online web server. The front end of it is built using the Shiny

package [Chang et al., 2022]. However, due to the fact that the application relies on external

servers, which reduces their persistence [Veretnik et al., 2008], we have developed AmyloGraph

as an R package [Team et al., 2021]. The package itself needs only core knowledge of R to be

able to run it on a local PC.

8.3 Results

The results of the study were published in Burdukiewicz et al. [2022], the amyloids interaction

database is available at https://amylograph.com/. One of the main results of the amyloid

interaction database was the identification of the 48 interactions of CsgA and 14 interactions of

CsgB with other amyloid proteins (Fig. 63).

Figure 63: Known interactions of CsgA and CsgB peptides in AmyloGraph.
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On a broader level, AmyloGraph contains 883 interactions between 46 proteins reported in

172 manuscripts. Moreover, we integrated into the database a user-friendly graph (Fig. 64A),

where nodes represent individual amyloids and their edges illustrate interactions between them.

In addition to the graphical representation of interactions, we also included a table with

interactees and interactors as well as links to UniProt records of these proteins (Fig. 64B). The

AmyloGraph table is dynamic, searchable, and the user can download selected rows. Down-

loaded data contain all available information, including the sequences of amyloid proteins par-

ticipating in the interactions.

Table as well as the graph representations of data can be filtered out using various criteria.

The filters cover all three descriptors. Moreover, the edges on the graph can be colored, according

to the levels of a chosen descriptor. Amino acid sequences can be used to filter the information

presented both in the graph and in the table. We have implemented a set of regular expressions

inspired by the POSIX system to facilitate more advanced searches of sequence motifs that

should appear in either interactor’s or interactee’s sequence.

By analyzing the interactions that occur between CsgA and CsgB and other amyloids, we

can determine that CsgA and CsgB react with essentially the same five proteins. The exceptions

are three proteins that react only with CsgA, namely Tau, α-synuclein and the lysosome (Fig.

65). It is also worth noting that these other amyloid proteins also interact with each other.

Based on the database, we found also information about the character of these interactions.

CsgA can normally accelerate their own aggregation, but there are reports that also cannot.

The ones that do not impact on aggregation usually have modified sequences. They differ by

38 amino acids along the sequence, when compared to CsgA K12 model. It speeds up the

aggregation of IAPP, SEVI, and Sup35 but does not have any effect on the aggregation of

Tau. CsgA can have no effect or accelerate the aggregation of α-synuclein, depending on the

sequence variation of CsgA. Its impact on amyloid β can be also different from no effect to

acceleration. CsgA proteins speed up the aggregation of amyloid β, even if they lack a signal

peptide. However, amyloid β, which is only two amino acids longer than the interacting one, does

not react to CsgA. Transthyretin either has no effect, slows down, or inhibits the aggregation

of CsgA, depending on the variation of the sequences. There are 13 records of transthyretin

impacting the aggregation of CsgA with different protein sequences.
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A

B

Figure 64: Record for CsgA in the AmyloGraph database. A) Graph view of amyloid-amyloid

interactions. The interactions (edges) are colored according to the levels of descriptor 2, “physical

binding”. The right-hand panel represents an overview of the interactions. B) Tabular view of

interactions. The top section of this card contains download options allowing to obtain data.



8.3 Results 146

Figure 65: CsgA and CsgB graph interactions from AmyloGraph. A) CsgA, B) CsgB inter-

actions with other amyloid proteins.
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It was confirmed that CsgB accelerates the aggregation of CsgA. In articles, it can either

speed up or slow down the aggregation of amyloid β, despite both proteins having identical

sequences. Additionally, CsgB speeds up the aggregation of IAPP and SEVI, but has no effect

on Sup35. Considering transthyretin, it either has no effect or slows down the aggregation of

CsgB, depending on the sequence length. Specifically, transthyretin with 20 fewer amino acids

(27 aa) at the N-terminus has no effect, whereas that with 147 amino acids slows down the

process.
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9 Discussion

9.1 Experimental validation of amyloid peptides

The first problem undertaken in the dissertation was to validate the performance of our

amyloid protein prediction software, AmyloGram [Burdukiewicz et al., 2017]. We selected two

datasets for validation, the first, called a reference, contained the 10 peptides (5 amyloid, 5

non-amyloid) that were correctly predicted by this software according to annotations in Amy-

Load database [Wozniak and Kotulska, 2015]. The second collection contained 24 peptides, 12

predicted by AmyloGram as false positives, and 12 as false negatives. To experimentally vali-

date the amyloidogenicity properties of these peptides, we used Thioflavin T (ThT) assay and

Atomic Force Microscopy (AFM). We used the reference dataset to set the relevant parameters

and work out the entire testing protocol. The reference peptides revealed properties in the

experiments expected from the computational predictions, which supports the efficiency of this

algorithm.

An interesting case showed peptide SWVIIE, which was predicted as non-amyloid matching

also the database annotation. This peptide gave unexpectedly a high signal in the ThT assay,

despite its indication as a non-amyloid. By using AFM, we determined that it did not form

fibrils but amorphous oligomers, which can also be made up of cross-β sheets. The results

indicate that oligomeric forms can also bind thioflavin T providing a misleading conclusion

that they can create amyloid fibrils. It also shows how important is validation by microscopic

methods, e.g., AFM or EM, of the results from ThT assay [Gosal et al., 2006, Fitzpatrick and

Saibil, 2019, Martins et al., 2020].

A good performance of AmyloGram was confirmed in the analyses of 24 peptides showing

contradictory computational predictions and database annotations. Six peptides predicted as

amyloids bounded ThT in the experiments, whereas ten recognized as non-amyloid did not.

Thereby, we were able to find 16 out of the 24 sequences that were mislabelled in the database.

Even though the data were erroneous, our predictor, AmyloGram, proved resistant to overfitting

and was able to identify the mislabelled sequences in its training dataset.

It should also be added that the peptide FTFIQF was initially annotated as non-amyloid in

AmyLoad, but AmyloGram and ThT assays concluded that it shows amyloidogenic properties.
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AmyloGram has been proven correct by another amyloid database, where they have AFM image

of fibrils created by the FTFIQF peptide [Louros et al., 2020a].

The results indicate that it is important to verify experimentally even those peptides that are

predicted with high probability and annotated in databases. Due to the variable performance

of the peptides and various applied experimental procedures, a standard should be worked out

in order as the results are comparable and the weight of sequences used to train computational

models to be similar. The obtained results can help to improve the current software and set

more precise cut-offs for amyloid prediction using experimental peptide data.

9.2 Bioinformatic and phylogenetic analyses of CsgA and CsgB

One of the main aims of this dissertation was a detailed computational analysis of CsgA

and CsgB amyloid proteins, which fulfill a common role in fibril formation and aggregation

[Chapman et al., 2002, Wang et al., 2008]. So far only the closest homologs were investigated

[Dueholm et al., 2012, Christensen et al., 2019], and the evolutionary history and phylogenetic

relationships of these proteins were not known. Therefore, we applied more objective motif

searching with statistical evaluation of this finding. We found five repeated regions in sequences

of both proteins. The regions are separated by 1 to 2 residues in CsgA, but are adjacent in

CsgB. The consensus motif of CsgA regions is twenty-one amino acids long and is characterized

by nine or more conserved sites, whereas in CsgB, it has 22 amino acids and includes at least 7

conserved sites. Interestingly, the found motifs differ from those identified by [Hammer et al.,

2007], which are shorter and shifted by two residues in the case of CsgA and by three residues

in CsgB (Fig. 3).

The motifs in these two proteins share common features. They contain a central glycine sur-

rounded by polar residues (asparagine, glutamine and serine) and hydrophobic residues (valine

and isoleucine) occurring alternatively. It seems that such an organization enables the forma-

tion of β-sheets by the regions interacting with each other and in consequence fibril creation.

The glycine breaks two β-strands created by the halves of the given region. In agreement with

that, glycine is commonly known as a secondary structure breaker and is frequent in turns.

Asparagine and serine are more frequent in β-sheets than α-helices. Glutamine is generally

present in both secondary structure types in similar content, but more frequent than in turns.
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Hydrophobic branched amino acids, such as valine and isoleucine) are also favored to be found

in β-strands in the middle of β-sheets.

Using a more sensitive internal sequence comparison, we found an additional region located

before the others and showing significant similarity to those five already identified, especially in

CsgA. This region demonstrated the presence of β-strands such as the five duplicated regions,

which supports this hypothesis that the analyzed amyloid proteins could have in the past at

least six similar repeating motifs. Five of them stayed more conserved and the other diverged.

It is not inconceivable that the region between the signal peptide and region 1 also participates

in aggregation.

In spite of the similar organization, sequences of CsgA and CsgB showed similarity only

up to 30% [Zhou et al., 2012c]. Therefore, we tried to find out whether the similar structural

organization is a result of convergence or whether these proteins are distant homologs and share

a common ancestry. That is why we performed sensitive searches for distant homologs and

conducted a comparison of HMM profiles based on sequences classified into clusters according

to similarity.

We identified 15,703 potential homologous sequences that contained at least one of the three

conserved curlin domains characteristic of the reference CsgA and CsgB proteins. The homologs

also showed a typical N-terminal signal peptide with a length usually from 20 to 26 residues. It

indicates that these proteins are secretory as the reference CsgA and CsgB. The prediction of

the secondary structure of the reference sequences from E. coli showed that signal peptide in

CsgB folds likely into α-helix, whereas that in CsgA can also adopt β-strand.

Clustering analysis, indicated that these proteins are distant homologs not directly related,

and their evolution was longer and more complex than expected. More than 98% homologs were

found in Bacteria and only some sequences in Archaea and viruses. They can represent cases of

horizontal gene transfer. Most findings in Eukaryota are probably contamination or false posi-

tives because many of these sequences showed the presence of other conserved domains, which

can resemble curli motifs due to molecular convergence. Considering the Bacteria domain, these

homologs are predominantly present in two phyla Bacteroidota and Proteobacteria, especially in

α-Proteobacteria and γ-Proteobacteria. It indicates that in these groups the evolution of these

proteins have occurred.
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Our analyses showed that homologs from Bacteroidota are closely related with those from

γ-Proteobacteria. In global phylogenomics studies, these two groups are distant lineages [Zhu

et al., 2019, Hug et al., 2016], so we can assume that Bacteroidota gained a curli gene in

the way of horizontal gene transfer from γ-Proteobacteria. Some sequences identified in other

bacteria phyla and classes, present in minority and branched in phylogenetic trees contrary to

their taxonomic affiliation, can be also associated with horizontal gene transfer, e.g. between

Proteobacteria subgroups. Phylogenetic analyses demonstrated that the division of CsgA and

CsgB lineages occurred after the divergence of γ-Proteobacteria from α- and β-Proteobacteria,

but before the radiation of γ-Proteobacteria.

Detailed phylogenetic analyses in closer relatives to E. coli CsgA and CsgB, mainly in

Enterobacterales identified potential case of horizontal gene transfer of CsgA and CsgB from

Ewingella to Pseudomonas reactans as well as CsgA from Enterobacter to Astraeus odoratus

and CsgB from Enterobacterales to Bacteroidales. The separation of some Enterobacteriaceae

genera, i.e. Kluyvera, Shimwellia and Klebsiella, from the main clade of this family, can also

suggest that CsgA and CsgB genes were transferred to them from representatives of other

Enterobacterales families. It is also possible that the taxonomic classification of these genera is

not correct, and they should not move to other families.

Investigations of five duplicated regions in Enterobacterales showed that those in CsgA ho-

mologs are characterized by seven conserved sites including in the order: serine, a hydrophobic

residue (valine or isoleucine), glutamine, glycine, asparagine, alanine and glutamine. In CsgB

homologs, there are six conserved sites across all five regions containing in the order: alanine, a

hydrophobic residue (valine or isoleucine), glutamine, asparagine, a hydrophobic residue (valine

or isoleucine), and glutamine. The most deviated is the 5th region. When we consider only

four more conserved regions, they will share additional three conserved sites including glycine,

asparagine and alanine. The conserved residues are important in formation of β-strands, which

create β-sheets and specific fibril organization of these proteins. It should be added that each

region is also characterized by specific residues, which distinguish it from the others. These

characteristic residues are conserved across compared sequences in various taxa, which suggests

that they can be also important in forming appropriate secondary structure and interactions

between regions. It also indicates that a similar secondary structure can be formed by different
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sequences. The collected sequences of regions can be used to construct HMM profiles individ-

ually for CsgA and CsgB or even particular regions. These profiles can help in more sensitive

searches of curlin domains.

Generally, CsgA regions showed a larger variation than those in CsgB, which means that

CsgA evolves quicker than CsgB. The greatest number of substitutions were accumulated in

region 4 and the smallest in 5 in CsgA homologs. The smallest divergence of region 5 can be

related with its role in direct interaction with region 1 from CsgB [Dunbar et al., 2019]. In

CsgB sequences, region 2 evolved the fastest, and region 5 was also the least changed. It is

interesting that the CsgB region 5, the most deviated from the common motif, demonstrated

the smallest sequence variation within Enterobacterales. The conservation of region 5 in CsgB

can be associated with its role in the nucleation of CsgA [Hammer et al., 2012].

Based on the phylogenetic tree of HMM profiles of individual regions we can propose a

potential order of duplication of these regions presented in Fig. 35. They were duplicated in

a different order in CsgA and CsgB homologs. Definitely, the regions in one protein share a

common ancestry and the duplication events occurred at first within a given protein lineage.

Pairwise comparisons of distances calculated for regions, showed that potentially interacting

regions evolved in a more correlated manner than those more distant in the structure. Larger

correlations were demonstrated by CsgA regions, which can mean that interactions between

these regions should be more conserved in this protein than in CsgB. In fact, the interactions of

between CsgA regions result in the formation of amyloid fibrils and CsgB initiates this process

[Hammer et al., 2007, Shu et al., 2012].

9.3 Experimental analyses of CsgA and CsgB variants without se-

lected regions

The subsequent problem undertaken in this dissertation was to evaluate the importance of

five individual regions of CsgA and CsgB proteins in their aggregation process. We successfully

constructed plasmids encoded by various variants of CsgA and CsgB proteins, a wild type

and five variants with deleted one of the regions. We also were able to effectively purify these

proteins. It should be emphasized that this experimental endeavor was not an easy task because
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the extraction and purification of amyloid proteins and their use in further studies is difficult due

to a high tendency to aggregation. The purification of CsgA variants using Cobalt and Ni-NTA

resins was successful but those of CsgB failed, despite many trials in small-scale production,

and the visible product on the Western Blot. One reason may be that purifying the CsgB

protein does not scale from small to large-scale production as well as it does in the case of

CsgA. Another reason could be that CsgB is much more toxic for a cell than CsgA, so when

produced on a larger scale, it caused the cell producing it can die. In the future, we will test

this by gradually scaling up the production.

The variant after deletion of R1 region turned out the most efficiently aggregating according

to our ThT assay analyses. It suggests that this region, although also participating in the

fibril polymerization process, regulates and slows down the aggregation in the native CsgA

protein. On the other hand, the variant with R5 deletion very poorly bounded thioflavin T

and required more time in the aggregation process. The removal of R4 region did not increase

substantially the fluorescence in ThT assay either but improved the aggregation better than

∆R5 variant. Other variants and wild type were placed rather between the most extreme

variants. CsgA WT showed very poor aggregation in some experiments, although we would

like to note that this protein eluted the slowest during purification. This may reflect the fact

that it had already started aggregation on the deposit and stayed there, thus we were unable

to capture the aggregation kinetics.

The results indicate that R5 and also R4 are more important in the aggregation than oth-

ers. The importance of R5 very well corresponds to the slowest evolution rate of this region

in Enterobacterales as found in this thesis. The R5 region interacting with R1 of the other

molecule, and R4 interacting with R5 can control the start of the aggregation process, without

which amyloid fibrils cannot form. The R2 and R3 regions may have a smaller impact on the

aggregation process than other due to the fact that they are placed in the middle of the folded

protein. The results are comparable with those obtained by other experiments [Wang et al.,

2008], which found that the lag phase for rapid fibril growth is the largest for variants without

R5 and the shortest for R1. The difference concerns the WT and ∆R2 variant. They noticed

the aggregation efficiency is slightly better for WT than ∆R2, but our studies indicated that it

is comparable or greater for the latter.
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We observed amyloid fibrils under AFM only for selected variants, including the very well

aggregating ∆R1 variant. A problem with obtaining the fibril under AFM, occurred even when

we changed the polarity of the micas to make them better adhere to the substrate. We suspect

that one week of incubation might have been too short in the case of these proteins to obtain long

and visible amyloid fibrils like in the works of Sleutel et al. [2017], or insulin fibrils in Sakalauskas

et al. [2019]. Increasing the concentration did not help their observation, either. Alternatively,

CsgA fibrils need a more modified protocol for their preparation on mica. Therefore, we plan

to refine the purification protocol so that the purified proteins would have more reproducible

results when measuring aggregation kinetics before analysis with the HDX-MS technique.

9.4 Comparison of functional and non-functional amyloids in terms

of sequence features

Besides CsgA and CsgB, there are also other functional amyloids that fulfill various functions

and represent different protein families in prokaryotes and eukaryotes [Maury, 2009, Van Gerven

et al., 2018]. Therefore, we decided to compare the functional and non-functional amyloids in

terms of sequence features that can be used to elaborate a prediction model. Detailed statistical

and discriminant studies showed that sequences in these groups are characterized by specific

features, which can be used in their recognition. Sequences of functional amyloids show a

high frequency of small hydroxylated amino acids, serine and threonine. In consequence, they

are also rich in dipeptides including these residues, i.e. ST, TS, TT, SS, AS, SA, SG, TG,

AT, GS, SN, GT and DS. It can be noticed that these amino acids co-occur with other small

amino acids, glycine and alanine, and include polar asparagine and aspartic acid. On the other

hand, sequences of non-functional amyloids contain more basic amino acids (arginine, lysine

and histidine), hydrophobic (leucine, methionine and cysteine) and polar tyrosine. The most

common dipeptides in these sequences are LK, AK, KV, LL, RV, FQ, ER, KE, EL, EK, VR,

LR and DL. These specific compositions can be associated with the distinct behavior of their

structures. The non-functional amyloids have a tendency to adopt other conformations, e.g.

β-cross, which causes the loss of functionality and is related with many disorders. In agreement

with that our analyses demonstrated that discriminating amino acid indices are related mainly
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with loop, turn, β-sheet, β-turn, β region, flexibility, buriability, hydrophobicity, net charge,

protein stability, optimized relative partition energies and free energy change.

Interestingly, in each group of these amyloids, it is possible to identify subgroups of sequences

that show different composition and sequence descriptors. It indicates that various types of

proteins belong to these proteins. The heterogeneity was revealed in plots of methods reducing

multidimensionality.

We studied many features and the best discriminating occurred dipeptide composition and

amino acid indices in random forest models. Measures used in the assessment of classifiers and

predictors, i.e. precision, sensitivity, specificity, accuracy, AUC and MCC achieved values mostly

higher than 0.9. Based on that a very good predictor for the functional and non-functional

amyloids can be elaborated.

9.5 Database of interactions between amyloids

The final problem undertaken in this dissertation was the creation of an amyloid interac-

tion database, which would include information on interactions between the CsgA and CsgB

proteins and other amyloids. Interactions between amyloid proteins were the subject of many

experimental studies. Although, there are several databases that collect data on amyloid pro-

teins [Wozniak and Kotulska, 2015, Louros et al., 2020a, Varadi et al., 2018, Rawat et al., 2020,

Pawlicki et al., 2008], they do not have data on interactions between them. Ren et al. [2019]

has attempted to systematize and organize the data about the interactions between amyloids.

Although he included many amyloid proteins in his work, he did not describe functional amy-

loids, CsgA and CsgB. Moreover, we can find contradictory interaction data in many papers

dealing with interamyloid interactions [Tran et al., 2017]. One of the reasons for this is the

lack of clear definitions of interactions and the required standardized experiments to determine

this. This makes the analysis of interactions between amyloids problematic when we want to

compare different experimental results.

Therefore, to create our database of amyloid interactions, we began by designing six sce-

narios of what such interactions look like. And three descriptors describe interactions’ effect on

aggregation rates, whether and how they bind, and what type of fibril they form. Thereby, we

have organized and systematized the terminology related to amyloid interactions. Thanks to the
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development of the database, we were able to find 48 interactions of CsgA and 14 interactions

of CsgB with other amyloid proteins. CsgB reacts with five and CsgA with additional three

amyloid proteins. After in-depth sequence analyses, this information can give us a preview of

which regions of CsgA and why they are able to bind an additional three amyloids than CsgB,

even though they have a very similar structure. Information in the database can help to under-

stand how individual proteins affect, inhibit or accelerate the aggregation process. It may also

serve in future analyses to identify sequences that will be able to efficiently inhibit or accelerate

the aggregation of selected amyloid proteins associated with diseases.

The created interactive database based on the Shiny [Chang et al., 2022] server can be

intelligible for many users. Based on the gathered data, we want to elaborate on a predictor

of regions that might be more aggregation-prone or responsible for nucleation. At the moment,

the database is focused on the whole families of protein homologs or single variants. But in

the future, we would like to expand it significantly, including information on the effect of small

molecules on aggregation. In addition, we also want to add information on the conditions of

the experiment, such as pH, temperature, or protein concentration [Pfefferkorn et al., 2010, Hu

et al., 2009].

The analysis of the interactions between CsgA and CsgB and other amyloid proteins provides

valuable insights into the complex nature of protein aggregation. The fact that CsgA and

CsgB react with essentially the same five proteins suggests that these proteins may play a

key role in the aggregation process. However, the exceptions, such as Tau, α-synuclein, and

lysozyme, which only react with CsgA, indicate that there are specific interactions between these

proteins that may contribute to the differences in their aggregation behavior. The acceleration

of CsgA aggregation by other CsgA is a common observation, although there are also some

papers that show no interaction at all. This variability may be attributed to differences in

experimental conditions or protein concentrations, which can affect the rate of aggregation. It

is interesting that a protein sequence that is only two amino acids longer than CsgA and CsgB,

i.e. amyloid β, does not affect the acceleration of CsgA aggregation, while those 40 amino acids

long do. It highlights the importance of some sequence features in protein-protein interactions

and aggregation.

The mutually exclusive results observed with Sup35, where one publication indicates acceler-
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ation and the other slowing of the interaction, underscores the complexity of protein aggregation

and the need for further investigation to fully understand the mechanisms involved. Similarly,

the different effects of α-synuclein and IAPP on the rate of aggregation depending on whether

they are the interactee or interactor suggest that the behavior of these proteins is highly context-

dependent.

The fact that Tau and lysosome have no effect on aggregation, whereas SEVI accelerates

CsgA aggregation indicates that different proteins may have distinct roles in the aggregation

process. The findings regarding CsgB interactions with other amyloid proteins further emphasize

the complexity of protein aggregation and the need for further research to fully understand the

mechanisms involved.

The interactions between proteins and their effects on each other are complex and multi-

faceted. This is highlighted by the different effects that CsgA has on various proteins, as well as

the effects of other proteins on CsgA. One interesting observation is that the sequence variation

in CsgA can lead to different effects on the aggregation of α-synuclein and amyloid β. This

suggests that the specific amino acid sequence of a protein can have a significant impact on

its interactions with other proteins. It is also noteworthy that CsgA can affect the aggregation

of a variety of different proteins, including itself, IAPP, SEVI, and Sup35. This suggests that

CsgA may have a broader role in protein aggregation than previously thought. Transthyretin

also has a complex relationship with both CsgA and CsgB, with varying effects depending on

the specific sequences involved. This highlights the fact that protein-protein interactions can

be highly specific and context-dependent or there may be other factors at play beyond just the

amino acid sequence of the protein.

Overall, the analysis of the interactions between CsgA and CsgB and other amyloid proteins

provides valuable insights into the complex nature of protein aggregation and highlights the need

for further investigation to fully understand the mechanisms involved. Moreover, the found in-

teractions between amyloids underscore the need for further research to better understand the

mechanisms underlying protein-protein interactions and their effects on protein aggregation.

By gaining a deeper understanding of these interactions, we may be able to develop new ap-

proaches for preventing or treating protein aggregation-related diseases such as Alzheimer’s and

Parkinson’s.
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10 Conclusions

• Our algorithm AmyloGram designed for the prediction of amyloids is resistant to overfit-

ting and occurred efficient in recognition of experimentally validated peptides.

• We identified 16 out of the 24 peptides that were incorrectly annotated in the database

AmyLoad.

• Some peptides, e.g. SWVIIE, which are amorphous oligomers and do not form fibrils, can

give a high signal in the ThT assay.

• More objective motif searching with statistical evaluation showed five repeated regions

in sequences of CsgA and CsgB. CsgA repeating motifs with a length of 21 residues are

separated by one or two amino acids, whereas those in CsgB has a length of 22 residues

and with no separation.

• The consensus motif in CsgA regions includes nine or more conserved sites, whereas that

in CsgB comprises at least seven conserved sites. The composition and distribution of

polar and hydrophobic residues corresponds to the presence of two β-strands per region

broken by the central glycine.

• A more sensitive internal sequence comparison revealed an extra region located before the

others, showing similarity to them and possibly folding into β-strands.

• There are at least 15,703 potential homologs of CsgA and CsgB that comprise conserved

curlin domains. Most of them are also equipped with N-terminal signal peptide typical of

the reference CsgA and CsgB.

• CsgA and CsgB homologs evolved mainly in Bacteria, especially in Bacteroidota as well

as α-Proteobacteria and γ-Proteobacteria.

• CsgA and CsgB are distant homologs that arose by duplication after separation of γ-

Proteobacteria from α- and β-Proteobacteria but before γ-Proteobacteria differentiation.
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• The CsgA and CsgB homologs were likely subjected to horizontal gene transfer, e.g.

between various Proteobacteria subgroups, from γ-Proteobacteria to Bacteroidota, and

possibly from Enterobacterales to Pseudomonas reactans and fungus Astraeus odoratus.

• Five duplicated regions of CsgA and CsgB in Enterobacterales exhibit seven and six con-

served sites respectively, including hydrophobic, polar and glycine residues, which are

important in the formation of β-strands. Each region can be distinguished from the oth-

ers by distinctive conserved residues.

• Regions in CsgA evolve faster than those in CsgB. Region 5 shows the smallest divergence

rate in both proteins probably due to the selection on interactions with region 1 of other

molecules of the curly proteins.

• CsgA and CsgB regions were duplicated in a different order and the duplication events

occurred before the lineages of these proteins separated.

• The evolution of potentially interacting regions in the curli proteins was generally more

correlated than those of more remote in the structure. CsgA regions showed stronger

correlations in amino acid substitutions, which may indicate that interactions between

these regions in this protein should be more conserved than in CsgB.

• CsgA ∆R1 turned out the most efficiently aggregating, suggesting that region 1 is respon-

sible for slowing down the process.

• CsgA ∆R5 needs much more time to start aggregation, which suggests that region 5 plays

a crucial role in the polymerization process of amyloid fibrils, e.g. due to interaction with

region 1 of other CsgA molecule.

• The other of CsgA variants were placed between the aforementioned protein constructs it

terms of aggregation speed.

• Wild type of CsgA showed a very long lag phase and low fluorescence intensity, which

may result from the fact that it had already started to aggregate during elution and was

left on the resin.
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• Although functional and non-functional amyloids are heterogeneous groups, they have

distinctive characteristics that can be used in their prediction. Sequences of functional

amyloids have a high content of small hydroxylated amino acids, serine and threonine

co-occurring with other small glycine and alanine, and polar asparagine and aspartic acid.

However, sequences of non-functional amyloids comprise more basic arginine, lysine and

histidine, hydrophobic leucine, methionine and cysteine as well as and polar tyrosine.

• The functional and non-functional amyloids can be effectively predicted in random forest

models based on dipeptide composition and amino acid indices associated with various

secondary structures, flexibility, buriability, hydrophobicity, net charge, protein stability,

optimized relative partition energies and free energy change.

• Based on a newly developed database of amyloid interactions AmyloGraph, we identified

48 interactions of CsgA and 14 interactions of CsgB with other amyloid proteins. CsgA

interacts with 9 proteins, whereas CsgB with 6.

• The database can be useful in determining how individual proteins affect the aggregation

process.



11. References 161

11 References

J. Adamcik and R. Mezzenga. Study of amyloid fibrils via atomic force microscopy. Current

Opinion in Colloid & Interface Science, 17(6):369–376, Dec. 2012. ISSN 1359-0294. doi:

10.1016/j.cocis.2012.08.001.

A. Aguzzi and A. M. Calella. Prions: Protein aggregation and infectious diseases. Physiological

Reviews, 89(4):1105–1152, Oct. 2009. ISSN 0031-9333. doi: 10.1152/physrev.00006.2009.

A. Aguzzi and A. K. K. Lakkaraju. Cell Biology of Prions and Prionoids: A Status Report.

Trends in Cell Biology, 26(1):40–51, Jan. 2016. ISSN 1879-3088. doi: 10.1016/j.tcb.2015.08.

007.

S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman.

Gapped BLAST and PSI-BLAST: A new generation of protein database search programs.

Nucleic Acids Research, 25(17):3389–3402, Sept. 1997. ISSN 0305-1048. doi: 10.1093/nar/

25.17.3389.

M. Andreasen, G. Meisl, J. D. Taylor, T. C. T. Michaels, A. Levin, D. E. Otzen, M. R. Chapman,

C. M. Dobson, S. J. Matthews, and T. P. J. Knowles. Physical Determinants of Amyloid

Assembly in Biofilm Formation. mBio, 10(1), Jan. 2019a. ISSN 2150-7511. doi: 10.1128/

mBio.02279-18.

M. Andreasen, G. Meisl, J. D. Taylor, T. C. T. Michaels, A. Levin, D. E. Otzen, M. R. Chapman,

C. M. Dobson, S. J. Matthews, and T. P. J. Knowles. Physical Determinants of Amyloid

Assembly in Biofilm Formation. mBio, 10(1):e02279–18, Feb. 2019b. ISSN 2150-7511. doi:

10.1128/mBio.02279-18.

C. Anfinsen and H. Scheraga. Experimental and Theoretical Aspects of Protein Folding. In

Advances in Protein Chemistry, volume 29, pages 205–300. Elsevier, 1975. ISBN 978-0-12-

034229-7. doi: 10.1016/S0065-3233(08)60413-1.

C. B. Anfinsen. Principles that Govern the Folding of Protein Chains. Science, 181(4096):

223–230, July 1973. doi: 10.1126/science.181.4096.223.



11. References 162

K. Annamalai, K.-H. Gührs, R. Koehler, M. Schmidt, H. Michel, C. Loos, P. M. Gaffney, C. J.

Sigurdson, U. Hegenbart, S. Schönland, and M. Fändrich. Polymorphism of Amyloid Fibrils

In Vivo. Angewandte Chemie (International Ed. in English), 55(15):4822–4825, Apr. 2016.

ISSN 1521-3773. doi: 10.1002/anie.201511524.

A. Arnqvist, A. Olsén, J. Pfeifer, D. G. Russell, and S. Normark. The Crl protein activates

cryptic genes for curli formation and fibronectin binding in Escherichia coli HB101. Molecular

Microbiology, 6(17):2443–2452, Sept. 1992. ISSN 0950-382X. doi: 10.1111/j.1365-2958.1992.

tb01420.x.

P. Arosio, T. P. J. Knowles, and S. Linse. On the lag phase in amyloid fibril formation. Physical

Chemistry Chemical Physics, 17(12):7606–7618, 2015. doi: 10.1039/C4CP05563B.

C. Ascoli, F. Dinelli, C. Frediani, D. Petracchi, M. Salerno, M. Labardi, M. Allegrini, and

F. Fuso. Normal and lateral forces in scanning force microscopy. Journal of Vacuum Science

& Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and

Phenomena, 12(3):1642–1645, May 1994. ISSN 1071-1023. doi: 10.1116/1.587251.

A. E. Badaczewska-Dawid, J. Garcia-Pardo, A. Kuriata, J. Pujols, S. Ventura, and S. Kmiecik.

A3D Database: Structure-based Protein Aggregation Predictions for the Human Proteome,

Nov. 2021.

G. Bahramali, B. Goliaei, Z. Minuchehr, and A. Salari. Chameleon sequences in neurodegener-

ative diseases. Biochemical and Biophysical Research Communications, 472(1):209–216, Mar.

2016. ISSN 0006-291X. doi: 10.1016/j.bbrc.2016.01.187.

T. L. Bailey and C. Elkan. Fitting a mixture model by expectation maximization to dis-

cover motifs in biopolymers. Proceedings. International Conference on Intelligent Systems for

Molecular Biology, 2:28–36, 1994. ISSN 1553-0833.

T. L. Bailey, J. Johnson, C. E. Grant, and W. S. Noble. The MEME Suite. Nucleic Acids

Research, 43(W1):W39–W49, July 2015. ISSN 0305-1048. doi: 10.1093/nar/gkv416.

K. R. Baker and L. Rice. The Amyloidoses: Clinical Features, Diagnosis and Treatment.

Methodist DeBakey Cardiovascular Journal, 8(3):3–7, 2012. ISSN 1947-6094.



11. References 163

A. Balistreri, E. Goetzler, and M. Chapman. Functional Amyloids Are the Rule Rather Than

the Exception in Cellular Biology. Microorganisms, 8(12):1951, Dec. 2020. ISSN 2076-2607.

doi: 10.3390/microorganisms8121951.

S. F. Banani, H. O. Lee, A. A. Hyman, and M. K. Rosen. Biomolecular condensates: Organizers

of cellular biochemistry. Nature Reviews Molecular Cell Biology, 18(5):285–298, May 2017.

ISSN 1471-0080. doi: 10.1038/nrm.2017.7.

A. M. Barbosa. fuzzySim: Applying fuzzy logic to binary similarity indices in ecology. Methods in

Ecology and Evolution, 6(7):853–858, 2015. ISSN 2041-210X. doi: 10.1111/2041-210X.12372.

M. M. Barnhart and M. R. Chapman. Curli Biogenesis and Function. Annual review of micro-

biology, 60:131–147, 2006. ISSN 0066-4227. doi: 10.1146/annurev.micro.60.080805.142106.

M. Belli, M. Ramazzotti, and F. Chiti. Prediction of amyloid aggregation in vivo. EMBO

Reports, 12(7):657–663, July 2011. ISSN 1469-221X. doi: 10.1038/embor.2011.116.

M. J. Benskey, R. G. Perez, and F. P. Manfredsson. The contribution of alpha synuclein to neu-

ronal survival and function – Implications for Parkinson’s disease. Journal of Neurochemistry,

137(3):331–359, 2016. ISSN 1471-4159. doi: 10.1111/jnc.13570.

K. Berthelot, S. Lecomte, Y. Estevez, B. Coulary-Salin, A. Bentaleb, C. Cullin, A. Deffieux,

and F. Peruch. Rubber Elongation Factor (REF), a Major Allergen Component in Hevea

brasiliensis Latex Has Amyloid Properties. PLoS ONE, 7(10):e48065, Oct. 2012. ISSN 1932-

6203. doi: 10.1371/journal.pone.0048065.

M. Biancalana and S. Koide. Molecular Mechanism of Thioflavin-T Binding to Amyloid Fibrils.

Biochimica et biophysica acta, 1804(7):1405–1412, July 2010. ISSN 0006-3002. doi: 10.1016/

j.bbapap.2010.04.001.

M. Biancalana, K. Makabe, A. Koide, and S. Koide. Molecular Mechanism of Thioflavin-T

Binding to the Surface of β-Rich Peptide Self-Assemblies. Journal of Molecular Biology, 385

(4):1052–1063, Jan. 2009. ISSN 0022-2836. doi: 10.1016/j.jmb.2008.11.006.



11. References 164

L. P. Blanco, M. L. Evans, D. R. Smith, M. P. Badtke, and M. R. Chapman. Diversity, biogenesis

and function of microbial amyloids. Trends in Microbiology, 20(2):66–73, Feb. 2012. ISSN

0966-842X. doi: 10.1016/j.tim.2011.11.005.

D. C. Bolton, M. P. McKinley, and S. B. Prusiner. Identification of a Protein That Purifies with

the Scrapie Prion. Science, 218(4579):1309–1311, Dec. 1982. doi: 10.1126/science.6815801.

S. A. Bondarev, O. V. Bondareva, G. A. Zhouravleva, and A. V. Kajava. BetaSerpentine: A

bioinformatics tool for reconstruction of amyloid structures. Bioinformatics, 34(4):599–608,

Feb. 2018. ISSN 1367-4803. doi: 10.1093/bioinformatics/btx629.

A. V. Bryksin and I. Matsumura. Overlap extension PCR cloning: A simple and reliable way

to create recombinant plasmids. BioTechniques, 48(6):463–465, June 2010. ISSN 0736-6205.

doi: 10.2144/000113418.

M. Burdukiewicz, P. Sobczyk, S. Rödiger, A. Duda-Madej, P. Mackiewicz, and M. Kotulska.

Amyloidogenic Motifs Revealed by N-Gram Analysis. Scientific Reports, 7(1):12961, Oct.

2017. ISSN 2045-2322. doi: 10.1038/s41598-017-13210-9.

M. Burdukiewicz, D. Rafacz, A. Barbach, K. Hubicka, L. Bąkała, A. Lassota, J. Stecko,

N. Szymańska, J. W. Wojciechowski, D. Kozakiewicz, N. Szulc, J. Chilimoniuk, I. Jęśkowiak,

M. Gąsior-Głogowska, and M. Kotulska. AmyloGraph: A comprehensive database of amy-

loid–amyloid interactions. Nucleic Acids Research, page gkac882, Oct. 2022. ISSN 0305-1048.

doi: 10.1093/nar/gkac882.

E. Callaway. ‘It will change everything’: DeepMind’s AI makes gigantic leap in solving protein

structures. Nature, 588(7837):203–204, Nov. 2020. doi: 10.1038/d41586-020-03348-4.

C. Camacho, G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos, K. Bealer, and T. L. Madden.

BLAST+: Architecture and applications. BMC Bioinformatics, 10(1):421, Dec. 2009. ISSN

1471-2105. doi: 10.1186/1471-2105-10-421.

S. Capella-Gutiérrez, J. M. Silla-Martínez, and T. Gabaldón. trimAl: A tool for automated

alignment trimming in large-scale phylogenetic analyses. Bioinformatics (Oxford, England),

25(15):1972–1973, Aug. 2009. ISSN 1367-4803. doi: 10.1093/bioinformatics/btp348.



11. References 165

A. Cárdenas, J.-B. Raina, C. Pogoreutz, N. Rädecker, J. Bougoure, P. Guagliardo, M. Pernice,

and C. R. Voolstra. Greater functional diversity and redundancy of coral endolithic micro-

biomes align with lower coral bleaching susceptibility. The ISME Journal, 16(10):2406–2420,

Oct. 2022. ISSN 1751-7370. doi: 10.1038/s41396-022-01283-y.

A. Carija, S. Navarro, N. S. de Groot, and S. Ventura. Protein aggregation into insoluble deposits

protects from oxidative stress. Redox Biology, 12:699–711, Aug. 2017. ISSN 2213-2317. doi:

10.1016/j.redox.2017.03.027.

W. Chang, J. Cheng, J. J. Allaire, C. Sievert, B. Schloerke, Y. Xie, J. Allen, J. McPher-

son, A. Dipert, B. Borges, RStudio, j. F. j. l. a. j. U. library), j. c. j. library; authors

listed in inst/www/shared/jquery-AUTHORS.txt), j. U. c. j. U. library; authors listed in

inst/www/shared/jqueryui/AUTHORS.txt), M. O. B. library), J. T. B. library), B. c. B. li-

brary), Twitter, I. B. library), P. N. K. B. accessibility plugin), V. T. B. accessibility plugin),

D. L. B. accessibility plugin), S. C. B. accessibility plugin), C. O. B. accessibility plugin), Pay-

Pal, I. B. accessibility plugin), S. P. B.-d. library), A. R. B.-d. library), B. R. s. js library),

S. B. s.-p.-a. library), D. I. i. rangeSlider library), S. S. J. strftime library), S. L. D. library),

J. F. s. js library), J. G. s. js library), I. S. h. js library), and R. C. T. t. implementation from

R). Shiny: Web Application Framework for R, Dec. 2022.

M. R. Chapman, L. S. Robinson, J. S. Pinkner, R. Roth, J. Heuser, M. Hammar, S. Normark,

and S. J. Hultgren. Role of Escherichia Coli Curli Operons in Directing Amyloid Fiber

Formation. Science (New York, N.Y.), 295(5556):851–855, Feb. 2002. ISSN 1095-9203. doi:

10.1126/science.1067484.

D. Charif, O. Clerc, C. Frank, J. R. Lobry, A. Necşulea, L. Palmeira, S. Penel, and G. Perrière.

Seqinr: Biological Sequences Retrieval and Analysis, Nov. 2022.

P. Chien, J. S. Weissman, and A. H. DePace. Emerging principles of conformation-based prion

inheritance. Annual Review of Biochemistry, 73:617–656, 2004. ISSN 0066-4154. doi: 10.

1146/annurev.biochem.72.121801.161837.

F. Chiti and C. M. Dobson. Protein Misfolding, Amyloid Formation, and Human Disease: A



11. References 166

Summary of Progress Over the Last Decade. Annual Review of Biochemistry, 86:27–68, June

2017. ISSN 1545-4509. doi: 10.1146/annurev-biochem-061516-045115.

L. F. B. Christensen, N. Schafer, A. Wolf-Perez, D. J. Madsen, and D. E. Otzen. Bacterial

Amyloids: Biogenesis and Biomaterials. In S. Perrett, A. K. Buell, and T. P. Knowles,

editors, Biological and Bio-inspired Nanomaterials: Properties and Assembly Mechanisms,

Advances in Experimental Medicine and Biology, pages 113–159. Springer, Singapore, 2019.

ISBN 9789811397912. doi: 10.1007/978-981-13-9791-2_4.

O. Conchillo-Solé, N. S. de Groot, F. X. Avilés, J. Vendrell, X. Daura, and S. Ventura. AGGRES-

CAN: A server for the prediction and evaluation of "hot spots" of aggregation in polypeptides.

BMC Bioinformatics, 8(1):65, Feb. 2007. ISSN 1471-2105. doi: 10.1186/1471-2105-8-65.

G. J. Cooper, A. C. Willis, A. Clark, R. C. Turner, R. B. Sim, and K. B. Reid. Purification

and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients.

Proceedings of the National Academy of Sciences of the United States of America, 84(23):

8628–8632, Dec. 1987. ISSN 0027-8424.

B. Cox, F. Ness, and M. Tuite. Analysis of the generation and segregation of propagons: Entities

that propagate the [PSI+] prion in yeast. Genetics, 165(1):23–33, Sept. 2003. ISSN 0016-6731.

doi: 10.1093/genetics/165.1.23.

F. o. b. L. B. a. A. Cutler and R. p. b. A. L. a. M. Wiener. randomForest: Breiman and Cutler’s

Random Forests for Classification and Regression, May 2022.

R. K. Das and R. V. Pappu. Conformations of intrinsically disordered proteins are influenced

by linear sequence distributions of oppositely charged residues. Proceedings of the National

Academy of Sciences, 110(33):13392–13397, Aug. 2013. doi: 10.1073/pnas.1304749110.

N. S. de Groot, I. Pallarés, F. X. Avilés, J. Vendrell, and S. Ventura. Prediction of "Hot Spots"

of Aggregation in Disease-Linked Polypeptides. BMC Structural Biology, 5:18, Sept. 2005.

ISSN 1472-6807. doi: 10.1186/1472-6807-5-18.

A. Drozdetskiy, C. Cole, J. Procter, and G. J. Barton. JPred4: A protein secondary structure



11. References 167

prediction server. Nucleic Acids Research, 43(W1):W389–W394, July 2015. ISSN 0305-1048.

doi: 10.1093/nar/gkv332.

E. Drummond, S. Nayak, A. Faustin, G. Pires, R. Hickman, M. Askenazi, M. Cohen,

T. Haldiman, C. Kim, X. Han, Y. Shao, J. G. Safar, B. Ueberheide, and T. Wis-

niewski. Proteomic Differences in Amyloid Plaques in Rapidly Progressive and Sporadic

Alzheimer’s Disease. Acta neuropathologica, 133(6):933–954, June 2017. ISSN 0001-6322.

doi: 10.1007/s00401-017-1691-0.

M. S. Dueholm, S. V. Petersen, M. Sønderkær, P. Larsen, G. Christiansen, K. L. Hein, J. J.

Enghild, J. L. Nielsen, K. L. Nielsen, P. H. Nielsen, and D. E. Otzen. Functional Amyloid

in Pseudomonas. Molecular Microbiology, 77(4):1009–1020, Aug. 2010. ISSN 1365-2958. doi:

10.1111/j.1365-2958.2010.07269.x.

M. S. Dueholm, M. Albertsen, D. Otzen, and P. H. Nielsen. Curli Functional Amyloid Systems

Are Phylogenetically Widespread and Display Large Diversity in Operon and Protein Struc-

ture. PloS One, 7(12):e51274, 2012. ISSN 1932-6203. doi: 10.1371/journal.pone.0051274.

M. S. Dueholm, M. T. Søndergaard, M. Nilsson, G. Christiansen, A. Stensballe, M. T. Over-

gaard, M. Givskov, T. Tolker-Nielsen, D. E. Otzen, and P. H. Nielsen. Expression of Fap

Amyloids in Pseudomonas Aeruginosa, P. Fluorescens, and P. Putida Results in Aggrega-

tion and Increased Biofilm Formation. MicrobiologyOpen, 2(3):365–382, June 2013. ISSN

2045-8827. doi: 10.1002/mbo3.81.

M. Dunbar, E. DeBenedictis, and S. Keten. Dimerization energetics of curli fiber subunits

CsgA and CsgB. npj Computational Materials, 5(1):1–9, Feb. 2019. ISSN 2057-3960. doi:

10.1038/s41524-019-0164-5.

S. R. Durell and A. Ben-Naim. Hydrophobic-hydrophilic forces in protein folding. Biopolymers,

107(8):e23020, 2017. ISSN 1097-0282. doi: 10.1002/bip.23020.

S. R. Eddy. Profile hidden Markov models. Bioinformatics, 14(9):755–763, Jan. 1998. ISSN

1367-4803. doi: 10.1093/bioinformatics/14.9.755.



11. References 168

S. R. Eddy. Accelerated Profile HMM Searches. PLOS Computational Biology, 7(10):e1002195,

Oct. 2011. ISSN 1553-7358. doi: 10.1371/journal.pcbi.1002195.

D. S. Eisenberg and M. R. Sawaya. Structural Studies of Amyloid Proteins at the Molecular

Level. Annual Review of Biochemistry, 86(1):69–95, June 2017. ISSN 0066-4154, 1545-4509.

doi: 10.1146/annurev-biochem-061516-045104.

M. A. Elliot, N. Karoonuthaisiri, J. Huang, M. J. Bibb, S. N. Cohen, C. M. Kao, and M. J. But-

tner. The chaplins: A family of hydrophobic cell-surface proteins involved in aerial mycelium

formation in Streptomyces coelicolor. Genes & Development, 17(14):1727–1740, July 2003.

ISSN 0890-9369. doi: 10.1101/gad.264403.

J. R. Engen. Analysis of Protein Conformation and Dynamics by Hydrogen/Deuterium Ex-

change MS. Analytical Chemistry, 81(19):7870–7875, Oct. 2009. ISSN 0003-2700. doi:

10.1021/ac901154s.

J. J. Englander, J. R. Rogero, and S. W. Englander. Protein Hydrogen Exchange Studied by

the Fragment Separation Method. Analytical biochemistry, 147(1):234–244, May 1985. ISSN

0003-2697.

E. Erskine, R. J. Morris, M. Schor, C. Earl, R. M. C. Gillespie, K. M. Bromley, T. Sukhodub,

L. Clark, P. K. Fyfe, L. C. Serpell, N. R. Stanley-Wall, and C. E. MacPhee. Formation

of Functional, Non-amyloidogenic Fibres by Recombinant Bacillus Subtilis TasA. Molecular

Microbiology, 110(6):897–913, Dec. 2018. ISSN 0950-382X. doi: 10.1111/mmi.13985.

M. L. Evans and M. R. Chapman. Curli Biogenesis: Order out of Disorder. Biochimica et

Biophysica Acta (BBA) - Molecular Cell Research, 1843(8):1551–1558, Aug. 2014. ISSN

0167-4889. doi: 10.1016/j.bbamcr.2013.09.010.

C. Família, S. R. Dennison, A. Quintas, and D. A. Phoenix. Prediction of Peptide and Protein

Propensity for Amyloid Formation. PLoS ONE, 10(8):e0134679, Aug. 2015. ISSN 1932-6203.

doi: 10.1371/journal.pone.0134679.

A.-M. Fernandez-Escamilla, F. Rousseau, J. Schymkowitz, and L. Serrano. Prediction of



11. References 169

Sequence-Dependent and Mutational Effects on the Aggregation of Peptides and Proteins.

Nature Biotechnology, 22(10):1302–1306, Oct. 2004. ISSN 1546-1696. doi: 10.1038/nbt1012.

A. W. Fitzpatrick and H. R. Saibil. Cryo-EM of amyloid fibrils and cellular aggregates. Current

Opinion in Structural Biology, 58:34–42, Oct. 2019. ISSN 0959-440X. doi: 10.1016/j.sbi.2019.

05.003.

A. W. P. Fitzpatrick, G. T. Debelouchina, M. J. Bayro, D. K. Clare, M. A. Caporini, V. S.

Bajaj, C. P. Jaroniec, L. Wang, V. Ladizhansky, S. A. Müller, C. E. MacPhee, C. A. Waudby,

H. R. Mott, A. De Simone, T. P. J. Knowles, H. R. Saibil, M. Vendruscolo, E. V. Orlova, R. G.

Griffin, and C. M. Dobson. Atomic structure and hierarchical assembly of a cross-β amyloid

fibril. Proceedings of the National Academy of Sciences of the United States of America, 110

(14):5468–5473, Apr. 2013. ISSN 1091-6490. doi: 10.1073/pnas.1219476110.

D. M. Fowler, A. V. Koulov, C. Alory-Jost, M. S. Marks, W. E. Balch, and J. W. Kelly.

Functional Amyloid Formation within Mammalian Tissue. PLoS Biology, 4(1):e6, Jan. 2006.

ISSN 1544-9173. doi: 10.1371/journal.pbio.0040006.

T. Frickey and A. Lupas. CLANS: A Java application for visualizing protein families based on

pairwise similarity. Bioinformatics (Oxford, England), 20(18):3702–3704, Dec. 2004. ISSN

1367-4803. doi: 10.1093/bioinformatics/bth444.

C. Frieden. Protein aggregation processes: In search of the mechanism. Protein Science :

A Publication of the Protein Society, 16(11):2334–2344, Nov. 2007. ISSN 0961-8368. doi:

10.1110/ps.073164107.

L. Fu, B. Niu, Z. Zhu, S. Wu, and W. Li. CD-HIT: Accelerated for clustering the next-generation

sequencing data. Bioinformatics, 28(23):3150–3152, Dec. 2012. ISSN 1367-4803. doi: 10.1093/

bioinformatics/bts565.

R. G. Creasey, C. T. Gibson, and N. H. Voelcker. Characterization of Fiber-Forming Peptides

and Proteins by Means of Atomic Force Microscopy. Current Protein & Peptide Science, 13

(3):232–257, May 2012. ISSN 13892037. doi: 10.2174/138920312800785058.



11. References 170

R. García and R. Pérez. Dynamic atomic force microscopy methods. Surface Science Reports,

47(6):197–301, Sept. 2002. ISSN 0167-5729. doi: 10.1016/S0167-5729(02)00077-8.

C. R. García-Jacas, S. A. Pinacho-Castellanos, L. A. García-González, and C. A. Brizuela.

Do deep learning models make a difference in the identification of antimicrobial peptides?

Briefings in Bioinformatics, 23(3):bbac094, May 2022. ISSN 1477-4054. doi: 10.1093/bib/

bbac094.

R. C. Garratt, N. F. Valadares, and J. F. R. Bachega. Oligomeric Proteins. In G. C. K.

Roberts, editor, Encyclopedia of Biophysics, pages 1781–1789. Springer, Berlin, Heidelberg,

2013. ISBN 978-3-642-16712-6. doi: 10.1007/978-3-642-16712-6_416.

M. Garvey, S. Meehan, S. L. Gras, H. J. Schirra, D. J. Craik, N. L. Van der Weerden, M. A.

Anderson, J. A. Gerrard, and J. A. Carver. A radish seed antifungal peptide with a high

amyloid fibril-forming propensity. Biochimica Et Biophysica Acta, 1834(8):1615–1623, Aug.

2013. ISSN 0006-3002. doi: 10.1016/j.bbapap.2013.04.030.

D. M. Gendoo and P. M. Harrison. Discordant and chameleon sequences: Their distribution

and implications for amyloidogenicity. Protein Science, 20(3):567–579, 2011. ISSN 1469-896X.

doi: 10.1002/pro.590.

C. J. Gibbs, D. C. Gajdusek, D. M. Asher, M. P. Alpers, E. Beck, P. M. Daniel, and W. B.

Matthews. Creutzfeldt-Jakob Disease (Spongiform Encephalopathy): Transmission to the

Chimpanzee. Science, 161(3839):388–389, July 1968. ISSN 0036-8075, 1095-9203. doi: 10.

1126/science.161.3839.388.

L. Giehm and D. E. Otzen. Strategies to increase the reproducibility of protein fibrillization

in plate reader assays. Analytical Biochemistry, 400(2):270–281, May 2010. ISSN 0003-2697.

doi: 10.1016/j.ab.2010.02.001.

C. Goldsbury, J. Kistler, U. Aebi, T. Arvinte, and G. J. S. Cooper. Watching amyloid fibrils

grow by time-lapse atomic force microscopy11Edited by W. Baumeister. Journal of Molecular

Biology, 285(1):33–39, Jan. 1999. ISSN 0022-2836. doi: 10.1006/jmbi.1998.2299.



11. References 171

D. J. Gordon, J. J. Balbach, R. Tycko, and S. C. Meredith. Increasing the Amphiphilicity of

an Amyloidogenic Peptide Changes the β-Sheet Structure in the Fibrils from Antiparallel to

Parallel. Biophysical Journal, 86(1):428–434, Jan. 2004. ISSN 0006-3495.

W. S. Gosal, S. L. Myers, S. E. Radford, and N. H. Thomson. Amyloid Under the Atomic

Force Microscope. Protein and Peptide Letters, 13(3):261–270, Mar. 2006. doi: 10.2174/

092986606775338498.

S. Gour, V. Kaushik, V. Kumar, P. Bhat, S. C. Yadav, and J. K. Yadav. Antimicrobial peptide

(Cn-AMP2) from liquid endosperm of Cocos nucifera forms amyloid-like fibrillar structure.

Journal of Peptide Science: An Official Publication of the European Peptide Society, 22(4):

201–207, Apr. 2016. ISSN 1099-1387. doi: 10.1002/psc.2860.

B. J. Grant, L. Skjærven, and X.-Q. Yao. The Bio3D packages for structural bioinformatics.

Protein Science, 30(1):20–30, 2021. ISSN 1469-896X. doi: 10.1002/pro.3923.

R. Grantham. Amino Acid Difference Formula to Help Explain Protein Evolution. Science

(New York, N.Y.), 185(4154):862–4, 1974.

I. Grundke-Iqbal, K. Iqbal, Y. C. Tung, M. Quinlan, H. M. Wisniewski, and L. I. Binder. Abnor-

mal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal

pathology. Proceedings of the National Academy of Sciences, 83(13):4913–4917, July 1986.

doi: 10.1073/pnas.83.13.4913.

J.-T. Guo, J. W. Jaromczyk, and Y. Xu. Analysis of chameleon sequences and their implications

in biological processes. Proteins: Structure, Function, and Bioinformatics, 67(3):548–558,

2007. ISSN 1097-0134. doi: 10.1002/prot.21285.

N. D. Hammer, J. C. Schmidt, and M. R. Chapman. The Curli Nucleator Protein, CsgB,

Contains an Amyloidogenic Domain That Directs CsgA Polymerization. Proceedings of the

National Academy of Sciences of the United States of America, 104(30):12494–12499, July

2007. ISSN 0027-8424. doi: 10.1073/pnas.0703310104.

N. D. Hammer, B. A. McGuffie, Y. Zhou, M. P. Badtke, A. A. Reinke, K. Brännström, J. E.

Gestwicki, A. Olofsson, F. Almqvist, and M. R. Chapman. The C-terminal repeating units



11. References 172

of CsgB direct bacterial functional amyloid nucleation. Journal of molecular biology, 422(3):

376–389, Sept. 2012. ISSN 0022-2836. doi: 10.1016/j.jmb.2012.05.043.

E. Hellstrand, B. Boland, D. M. Walsh, and S. Linse. Amyloid β-Protein Aggregation Pro-

duces Highly Reproducible Kinetic Data and Occurs by a Two-Phase Process. ACS Chemical

Neuroscience, 1(1):13–18, Oct. 2009. ISSN 1948-7193. doi: 10.1021/cn900015v.

X. Hu, S. L. Crick, G. Bu, C. Frieden, R. V. Pappu, and J.-M. Lee. Amyloid seeds formed

by cellular uptake, concentration, and aggregation of the amyloid-beta peptide. Proceedings

of the National Academy of Sciences, 106(48):20324–20329, Dec. 2009. doi: 10.1073/pnas.

0911281106.

L. A. Hug, B. J. Baker, K. Anantharaman, C. T. Brown, A. J. Probst, C. J. Castelle, C. N.

Butterfield, A. W. Hernsdorf, Y. Amano, K. Ise, Y. Suzuki, N. Dudek, D. A. Relman, K. M.

Finstad, R. Amundson, B. C. Thomas, and J. F. Banfield. A New View of the Tree of Life.

Nature Microbiology, 1:16048, Apr. 2016. ISSN 2058-5276. doi: 10.1038/nmicrobiol.2016.48.

R. L. Hull, G. T. Westermark, P. Westermark, and S. E. Kahn. Islet Amyloid: A Critical Entity

in the Pathogenesis of Type 2 Diabetes. The Journal of Clinical Endocrinology & Metabolism,

89(8):3629–3643, Aug. 2004. ISSN 0021-972X. doi: 10.1210/jc.2004-0405.

L. Huo, H. Zhang, X. Huo, Y. Yang, X. Li, and Y. Yin. pHMM-tree: Phylogeny of profile

hidden Markov models. Bioinformatics, 33(7):1093–1095, Apr. 2017. ISSN 1367-4803. doi:

10.1093/bioinformatics/btw779.

M. G. Iadanza, M. P. Jackson, E. W. Hewitt, N. A. Ranson, and S. E. Radford. A new era

for understanding amyloid structures and disease. Nature Reviews Molecular Cell Biology, 19

(12):755–773, Dec. 2018. ISSN 1471-0072, 1471-0080. doi: 10.1038/s41580-018-0060-8.

H. Inouye, P. E. Fraser, and D. A. Kirschner. Structure of beta-crystallite assemblies formed by

Alzheimer beta-amyloid protein analogues: Analysis by x-ray diffraction. Biophysical Journal,

64(2):502–519, Feb. 1993. ISSN 0006-3495. doi: 10.1016/S0006-3495(93)81393-6.

J. J. Roa, G. Oncins, J. Diaz, F. Sanz, and M. Segarra. Calculation of Young’s Modulus Value



11. References 173

by Means of AFM. Recent Patents on Nanotechnology, 5(1):27–36, Jan. 2011. ISSN 18722105.

doi: 10.2174/187221011794474985.

T. R. Jahn and S. E. Radford. Folding versus aggregation: Polypeptide conformations on

competing pathways. Archives of Biochemistry and Biophysics, 469(1):100–117, Jan. 2008.

ISSN 0003-9861. doi: 10.1016/j.abb.2007.05.015.

M. Jamal, U. Tasneem, T. Hussain, and S. Andleeb. Bacterial Biofilm: Its Composition, For-

mation and Role in Human Infections. Research & Reviews: Journal of Microbiology and

Biotechnology, 4(3), July 2015. ISSN E- 2320 - 3528 brP- 2347 - 2286.

P. F. Jensen and K. D. Rand. Hydrogen Exchange. In Hydrogen Exchange Mass Spectrometry

of Proteins, chapter 1, pages 1–17. John Wiley & Sons, Ltd, 2016. ISBN 978-1-118-70374-8.

doi: 10.1002/9781118703748.ch1.

R. Jia, C. Martens, M. Shekhar, S. Pant, G. A. Pellowe, A. M. Lau, H. E. Findlay, N. J. Harris,

E. Tajkhorshid, P. J. Booth, and A. Politis. Hydrogen-deuterium exchange mass spectrometry

captures distinct dynamics upon substrate and inhibitor binding to a transporter. Nature

Communications, 11(1):6162, Dec. 2020. ISSN 2041-1723. doi: 10.1038/s41467-020-20032-3.

J. L. Jiménez, E. J. Nettleton, M. Bouchard, C. V. Robinson, C. M. Dobson, and H. R. Saibil.

The protofilament structure of insulin amyloid fibrils. Proceedings of the National Academy

of Sciences, 99(14):9196–9201, July 2002. ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.

142459399.

J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool,

R. Bates, A. Žídek, A. Potapenko, A. Bridgland, C. Meyer, S. A. A. Kohl, A. J. Ballard,

A. Cowie, B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen, D. Reiman,

E. Clancy, M. Zielinski, M. Steinegger, M. Pacholska, T. Berghammer, S. Bodenstein, D. Sil-

ver, O. Vinyals, A. W. Senior, K. Kavukcuoglu, P. Kohli, and D. Hassabis. Highly accurate

protein structure prediction with AlphaFold. Nature, 596(7873):583–589, Aug. 2021. ISSN

1476-4687. doi: 10.1038/s41586-021-03819-2.



11. References 174

S. Kalyaanamoorthy, B. Q. Minh, T. K. F. Wong, A. von Haeseler, and L. S. Jermiin. Mod-

elFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods, 14(6):

587–589, June 2017. ISSN 1548-7105. doi: 10.1038/nmeth.4285.

K. Katoh and D. M. Standley. MAFFT Multiple Sequence Alignment Software Version 7:

Improvements in Performance and Usability. Molecular Biology and Evolution, 30(4):772–

780, Apr. 2013. ISSN 1537-1719. doi: 10.1093/molbev/mst010.

S. Kawashima, P. Pokarowski, M. Pokarowska, A. Kolinski, T. Katayama, and M. Kanehisa.

AAindex: Amino Acid Index Database, Progress Report 2008. Nucleic acids research, 36

(Database issue):D202–5, 2008.

P. C. Ke, R. Zhou, L. C. Serpell, R. Riek, T. P. J. Knowles, H. A. Lashuel, E. Gazit, I. W.

Hamley, T. P. Davis, M. Fändrich, D. E. Otzen, M. R. Chapman, C. M. Dobson, D. S.

Eisenberg, and R. Mezzenga. Half a century of amyloids: Past, present and future. Chemical

Society Reviews, 49(15):5473–5509, Aug. 2020. ISSN 1460-4744. doi: 10.1039/C9CS00199A.

L. Keresztes, E. Szögi, B. Varga, V. Farkas, A. Perczel, and V. Grolmusz. The Budapest

Amyloid Predictor and Its Applications. Biomolecules, 11(4):500, Apr. 2021. doi: 10.3390/

biom11040500.

H. E. Klock and S. A. Lesley. The Polymerase Incomplete Primer Extension (PIPE) method

applied to high-throughput cloning and site-directed mutagenesis. Methods in Molecular

Biology (Clifton, N.J.), 498:91–103, 2009. ISSN 1064-3745. doi: 10.1007/978-1-59745-196-3_

6.

M. F. Knauer, B. Soreghan, D. Burdick, J. Kosmoski, and C. G. Glabe. Intracellular accumu-

lation and resistance to degradation of the Alzheimer amyloid A4/beta protein. Proceedings

of the National Academy of Sciences, 89(16):7437–7441, Aug. 1992. doi: 10.1073/pnas.89.16.

7437.

T. P. J. Knowles, M. Vendruscolo, and C. M. Dobson. The Amyloid State and Its Association

with Protein Misfolding Diseases. Nature Reviews. Molecular Cell Biology, 15(6):384–396,

June 2014. ISSN 1471-0080. doi: 10.1038/nrm3810.



11. References 175

R. Kodali, A. D. Williams, S. Chemuru, and R. Wetzel. Abeta(1-40) forms five distinct amyloid

structures whose beta-sheet contents and fibril stabilities are correlated. Journal of Molecular

Biology, 401(3):503–517, Aug. 2010. ISSN 1089-8638. doi: 10.1016/j.jmb.2010.06.023.

M. Koliński, R. Dec, and W. Dzwolak. Multiscale Modeling of Amyloid Fibrils Formed by

Aggregating Peptides Derived from the Amyloidogenic Fragment of the A-Chain of Insulin.

International Journal of Molecular Sciences, 22(22):12325, Jan. 2021. ISSN 1422-0067. doi:

10.3390/ijms222212325.

L. Konermann, J. Pan, and Y.-H. Liu. Hydrogen Exchange Mass Spectrometry for Studying

Protein Structure and Dynamics. Chemical Society Reviews, 40(3):1224–1234, Feb. 2011.

ISSN 1460-4744. doi: 10.1039/C0CS00113A.

M. R. H. Krebs, E. H. C. Bromley, and A. M. Donald. The binding of thioflavin-T to amyloid

fibrils: Localisation and implications. Journal of Structural Biology, 149(1):30–37, Jan. 2005.

ISSN 1047-8477. doi: 10.1016/j.jsb.2004.08.002.

A. Kulandaisamy, V. Lathi, K. ViswaPoorani, K. Yugandhar, and M. M. Gromiha. Important

amino acid residues involved in folding and binding of protein–protein complexes. Interna-

tional Journal of Biological Macromolecules, 94:438–444, Jan. 2017. ISSN 0141-8130. doi:

10.1016/j.ijbiomac.2016.10.045.

M. Kurcinski, M. Pawel Ciemny, T. Oleniecki, A. Kuriata, A. E. Badaczewska-Dawid, A. Kolin-

ski, and S. Kmiecik. CABS-dock standalone: A toolbox for flexible protein–peptide docking.

Bioinformatics, 35(20):4170–4172, Oct. 2019. ISSN 1367-4803. doi: 10.1093/bioinformatics/

btz185.

A. Kuriata, V. Iglesias, J. Pujols, M. Kurcinski, S. Kmiecik, and S. Ventura. Aggrescan3D

(A3D) 2.0: Prediction and engineering of protein solubility. Nucleic Acids Research, 47(W1):

W300–W307, July 2019. ISSN 0305-1048. doi: 10.1093/nar/gkz321.

G. Lamour, R. Nassar, P. H. W. Chan, G. Bozkurt, J. Li, J. M. Bui, C. K. Yip, T. Mayor,

H. Li, H. Wu, and J. A. Gsponer. Mapping the Broad Structural and Mechanical Properties



11. References 176

of Amyloid Fibrils. Biophysical Journal, 112(4):584–594, Feb. 2017. ISSN 0006-3495. doi:

10.1016/j.bpj.2016.12.036.

S. Lê, J. Josse, and F. Husson. FactoMineR : An R Package for Multivariate Analysis. Journal

of Statistical Software, 25(1), 2008. ISSN 1548-7660. doi: 10.18637/jss.v025.i01.

G. Legname. Elucidating the function of the prion protein. PLoS Pathogens, 13(8):e1006458,

Aug. 2017. ISSN 1553-7366. doi: 10.1371/journal.ppat.1006458.

H. LeVine. Thioflavine T interaction with synthetic Alzheimer’s disease beta-amyloid peptides:

Detection of amyloid aggregation in solution. Protein Science : A Publication of the Protein

Society, 2(3):404–410, Mar. 1993. ISSN 0961-8368.

M. Levitt and A. Warshel. Computer simulation of protein folding. Nature, 253(5494):694–698,

Feb. 1975. ISSN 1476-4687. doi: 10.1038/253694a0.

J. Li, T. McQuade, A. B. Siemer, J. Napetschnig, K. Moriwaki, Y.-S. Hsiao, E. Damko, D. Mo-

quin, T. Walz, A. McDermott, F. Ka-Ming Chan, and H. Wu. The RIP1/RIP3 Necrosome

Forms a Functional Amyloid Signaling Complex Required for Programmed Necrosis. Cell,

150(2):339–350, July 2012. ISSN 0092-8674. doi: 10.1016/j.cell.2012.06.019.

D. J. Lindberg, A. Wenger, E. Sundin, E. Wesén, F. Westerlund, and E. K. Esbjörner. Binding of

Thioflavin-T to Amyloid Fibrils Leads to Fluorescence Self-Quenching and Fibril Compaction.

Biochemistry, 56(16):2170–2174, 2017. ISSN 1520-4995. doi: 10.1021/acs.biochem.7b00035.

Y. Liu, T. Liu, T. Lei, D. Zhang, S. Du, L. Girani, D. Qi, C. Lin, R. Tong, and Y. Wang.

RIP1/RIP3-regulated necroptosis as a target for multifaceted disease therapy (Review). In-

ternational Journal of Molecular Medicine, 44(3):771–786, Sept. 2019. ISSN 1107-3756. doi:

10.3892/ijmm.2019.4244.

Y. Liu, I. Sokolov, M. E. Dokukin, Y. Xiong, and P. Peng. Can AFM be used to measure absolute

values of Young’s modulus of nanocomposite materials down to the nanoscale? Nanoscale,

12(23):12432–12443, 2020. ISSN 2040-3364, 2040-3372. doi: 10.1039/D0NR02314K.



11. References 177

M. Lopez de la Paz and L. Serrano. Sequence determinants of amyloid fibril formation. Pro-

ceedings of the National Academy of Sciences, 101(1):87–92, Jan. 2004. ISSN 0027-8424,

1091-6490. doi: 10.1073/pnas.2634884100.

N. Louros, K. Konstantoulea, M. De Vleeschouwer, M. Ramakers, J. Schymkowitz, and

F. Rousseau. WALTZ-DB 2.0: An updated database containing structural information of

experimentally determined amyloid-forming peptides. Nucleic Acids Research, 48(D1):D389–

D393, Jan. 2020a. ISSN 0305-1048. doi: 10.1093/nar/gkz758.

N. Louros, G. Orlando, M. De Vleeschouwer, F. Rousseau, and J. Schymkowitz. Structure-based

machine-guided mapping of amyloid sequence space reveals uncharted sequence clusters with

higher solubilities. Nature Communications, 11(1):3314, July 2020b. ISSN 2041-1723. doi:

10.1038/s41467-020-17207-3.

A. S. Lyon, W. B. Peeples, and M. K. Rosen. A framework for understanding the functions

of biomolecular condensates across scales. Nature Reviews Molecular Cell Biology, 22(3):

215–235, Mar. 2021. ISSN 1471-0080. doi: 10.1038/s41580-020-00303-z.

M. Madera. Profile Comparer: A program for scoring and aligning profile hidden Markov

models. Bioinformatics (Oxford, England), 24(22):2630–2631, Nov. 2008. ISSN 1367-4811.

doi: 10.1093/bioinformatics/btn504.

S. K. Maji, M. H. Perrin, M. R. Sawaya, S. Jessberger, K. Vadodaria, R. A. Rissman, P. S.

Singru, K. P. R. Nilsson, R. Simon, D. Schubert, D. Eisenberg, J. Rivier, P. Sawchenko,

W. Vale, and R. Riek. Functional Amyloids as Natural Storage of Peptide Hormones in

Pituitary Secretory Granules. Science (New York, N.Y.), 325(5938):328–332, July 2009.

ISSN 0036-8075. doi: 10.1126/science.1173155.

O. S. Makin and L. C. Serpell. Structures for amyloid fibrils. The FEBS Journal, 272(23):

5950–5961, 2005. ISSN 1742-4658. doi: 10.1111/j.1742-4658.2005.05025.x.

O. S. Makin, E. Atkins, P. Sikorski, J. Johansson, and L. C. Serpell. Molecular basis for

amyloid fibril formation and stability. Proceedings of the National Academy of Sciences of the



11. References 178

United States of America, 102(2):315–320, Jan. 2005. ISSN 0027-8424. doi: 10.1073/pnas.

0406847102.

M. Malmberg, T. Malm, O. Gustafsson, A. Sturchio, C. Graff, A. J. Espay, A. P. Wright,

S. El Andaloussi, A. Lindén, and K. Ezzat. Disentangling the Amyloid Pathways: A Mecha-

nistic Approach to Etiology. Frontiers in Neuroscience, 14:256, Apr. 2020. ISSN 1662-4548.

doi: 10.3389/fnins.2020.00256.

K. G. Malmos, L. M. Blancas-Mejia, B. Weber, J. Buchner, M. Ramirez-Alvarado, H. Naiki,

and D. Otzen. ThT 101: A primer on the use of thioflavin T to investigate amyloid formation.

Amyloid-journal of Protein Folding Disorders, 24(1):1–16, Jan. 2017a. ISSN 1350-6129. doi:

10.1080/13506129.2017.1304905.

K. G. Malmos, L. M. Blancas-Mejia, B. Weber, J. Buchner, M. Ramirez-Alvarado, H. Naiki, and

D. Otzen. ThT 101: A Primer on the Use of Thioflavin T to Investigate Amyloid Formation.

Amyloid : the international journal of experimental and clinical investigation : the official

journal of the International Society of Amyloidosis, 24(1):1–16, Jan. 2017b. ISSN 1350-6129.

doi: 10.1080/13506129.2017.1304905.

A. Marchler-Bauer, C. Zheng, F. Chitsaz, M. K. Derbyshire, L. Y. Geer, R. C. Geer, N. R.

Gonzales, M. Gwadz, D. I. Hurwitz, C. J. Lanczycki, F. Lu, S. Lu, G. H. Marchler, J. S.

Song, N. Thanki, R. A. Yamashita, D. Zhang, and S. H. Bryant. CDD: Conserved domains

and protein three-dimensional structure. Nucleic Acids Research, 41(D1):D348–D352, Jan.

2013. ISSN 0305-1048. doi: 10.1093/nar/gks1243.

C. Martens, M. Shekhar, A. J. Borysik, A. M. Lau, E. Reading, E. Tajkhorshid, P. J. Booth, and

A. Politis. Direct protein-lipid interactions shape the conformational landscape of secondary

transporters. Nature Communications, 9(1):4151, Oct. 2018. ISSN 2041-1723. doi: 10.1038/

s41467-018-06704-1.

P. M. Martins, S. Navarro, A. Silva, M. F. Pinto, Z. Sárkány, F. Figueiredo, P. J. B. Pereira,

F. Pinheiro, Z. Bednarikova, M. Burdukiewicz, O. V. Galzitskaya, Z. Gazova, C. M. Gomes,

A. Pastore, L. C. Serpell, R. Skrabana, V. Smirnovas, M. Ziaunys, D. E. Otzen, S. Ventura,



11. References 179

and S. Macedo-Ribeiro. MIRRAGGE - Minimum Information Required for Reproducible

AGGregation Experiments. Frontiers in Molecular Neuroscience, 13:582488, 2020. ISSN

1662-5099. doi: 10.3389/fnmol.2020.582488.

C. P. J. Maury. The emerging concept of functional amyloid. Journal of Internal Medicine, 265

(3):329–334, 2009. ISSN 1365-2796. doi: 10.1111/j.1365-2796.2008.02068.x.

J. Meinhardt, C. Sachse, P. Hortschansky, N. Grigorieff, and M. Fändrich. Abeta(1-40) fibril

polymorphism implies diverse interaction patterns in amyloid fibrils. Journal of Molecular

Biology, 386(3):869–877, Feb. 2009. ISSN 1089-8638. doi: 10.1016/j.jmb.2008.11.005.

G. Meisl, X. Yang, E. Hellstrand, B. Frohm, J. B. Kirkegaard, S. I. A. Cohen, C. M. Dobson,

S. Linse, and T. P. J. Knowles. Differences in nucleation behavior underlie the contrasting

aggregation kinetics of the Aβ40 and Aβ42 peptides. Proceedings of the National Academy

of Sciences of the United States of America, 111(26):9384–9389, July 2014. ISSN 1091-6490.

doi: 10.1073/pnas.1401564111.

B. Q. Minh, H. A. Schmidt, O. Chernomor, D. Schrempf, M. D. Woodhams, A. von Haeseler,

and R. Lanfear. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference

in the Genomic Era. Molecular Biology and Evolution, 37(5):1530–1534, May 2020. ISSN

0737-4038. doi: 10.1093/molbev/msaa015.

V. J. Morris, A. R. Kirby, and A. P. Gunning. Atomic Force Microscopy for Biologists. IMPE-

RIAL COLLEGE PRESS, second edition, Aug. 2009. ISBN 978-1-84816-467-3 978-1-84816-

468-0. doi: 10.1142/p674.

L. R. Murphy, A. Wallqvist, and R. M. Levy. Simplified Amino Acid Alphabets for Protein

Fold Recognition and Implications for Folding. Protein Engineering, 13(3):149–152, Mar.

2000. ISSN 0269-2139.

H. Naiki, K. Higuchi, M. Hosokawa, and T. Takeda. Fluorometric determination of amyloid

fibrils in vitro using the fluorescent dye, thioflavine T. Analytical Biochemistry, 177(2):244–

249, Mar. 1989. ISSN 0003-2697. doi: 10.1016/0003-2697(89)90046-8.



11. References 180

K. Naka. Monomers, Oligomers, Polymers, and Macromolecules (Overview). In S. Kobayashi

and K. Müllen, editors, Encyclopedia of Polymeric Nanomaterials, pages 1–6. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2014. ISBN 978-3-642-36199-9. doi: 10.1007/

978-3-642-36199-9_237-1.

P. Narayan, A. Orte, R. W. Clarke, B. Bolognesi, S. Hook, K. A. Ganzinger, S. Meehan, M. R.

Wilson, C. M. Dobson, and D. Klenerman. The extracellular chaperone clusterin sequesters

oligomeric forms of the amyloid-B1-40 peptide. Nature Structural & Molecular Biology, 19

(1):79–83, Jan. 2012. ISSN 1545-9985. doi: 10.1038/nsmb.2191.

D. Nečas and P. Klapetek. Gwyddion: An open-source software for SPM data analysis. Open

Physics, 10(1):181–188, Feb. 2012. ISSN 2391-5471. doi: 10.2478/s11534-011-0096-2.

J. Oh, J.-G. Kim, E. Jeon, C.-H. Yoo, J. S. Moon, S. Rhee, and I. Hwang. Amyloidoge-

nesis of Type III-dependent Harpins from Plant Pathogenic Bacteria *. Journal of Bi-

ological Chemistry, 282(18):13601–13609, May 2007. ISSN 0021-9258, 1083-351X. doi:

10.1074/jbc.M602576200.

J. Pan, D. J. Wilson, and L. Konermann. Pulsed Hydrogen Exchange and Electrospray Charge-

State Distribution as Complementary Probes of Protein Structure in Kinetic Experiments:

Implications for Ubiquitin Folding. Biochemistry, 44(24):8627–8633, June 2005. ISSN 0006-

2960. doi: 10.1021/bi050575e.

S. Pawlicki, A. Le Béchec, and C. Delamarche. AMYPdb: A database dedicated to amyloid

precursor proteins. BMC Bioinformatics, 9(1):273, June 2008. ISSN 1471-2105. doi: 10.1186/

1471-2105-9-273.

W. R. Pearson, T. Wood, Z. Zhang, and W. Miller. Comparison of DNA Sequences with Protein

Sequences. Genomics, 46(1):24–36, Nov. 1997. ISSN 0888-7543. doi: 10.1006/geno.1997.4995.

S. Perov, O. Lidor, N. Salinas, N. Golan, E. Tayeb- Fligelman, M. Deshmukh, D. Willbold,

and M. Landau. Structural Insights into Curli CsgA Cross-β Fibril Architecture Inspire

Repurposing of Anti-Amyloid Compounds as Anti-Biofilm Agents. PLoS Pathogens, 15(8),

Aug. 2019. ISSN 1553-7366. doi: 10.1371/journal.ppat.1007978.



11. References 181

R. A. Peterson. The R Journal: Finding Optimal Normalizing Transformations via bestNormal-

ize. The R Journal, 13(1):294–313, June 2021. ISSN 2073-4859. doi: 10.32614/RJ-2021-041.

A. T. Petkova, R. D. Leapman, Z. Guo, W.-M. Yau, M. P. Mattson, and R. Tycko. Self-

Propagating, Molecular-Level Polymorphism in Alzheimer’s ß-Amyloid Fibrils. Science, 307

(5707):262–265, Jan. 2005. ISSN 0036-8075, 1095-9203. doi: 10.1126/science.1105850.

C. M. Pfefferkorn, R. P. McGlinchey, and J. C. Lee. Effects of pH on aggregation kinetics of

the repeat domain of a functional amyloid, Pmel17. Proceedings of the National Academy of

Sciences, 107(50):21447–21452, Dec. 2010. doi: 10.1073/pnas.1006424107.

F. Pinheiro, J. Santos, and S. Ventura. AlphaFold and the amyloid landscape. Journal of

Molecular Biology, 433(20):167059, Oct. 2021. ISSN 0022-2836. doi: 10.1016/j.jmb.2021.

167059.

S. Prusiner. Molecular biology and pathogenesis of prion diseases. Trends in Biochemical

Sciences, 21(12):482–487, Dec. 1996. ISSN 09680004. doi: 10.1016/S0968-0004(96)10063-3.

J. Pujols, S. Peña-Díaz, and S. Ventura. AGGRESCAN3D: Toward the Prediction of the Ag-

gregation Propensities of Protein Structures. In M. Gore and U. B. Jagtap, editors, Compu-

tational Drug Discovery and Design, Methods in Molecular Biology, pages 427–443. Springer,

New York, NY, 2018. ISBN 978-1-4939-7756-7. doi: 10.1007/978-1-4939-7756-7_21.

D. Puzzo, L. Privitera, M. Fa’, A. Staniszewski, G. Hashimoto, F. Aziz, M. Sakurai, E. M. Ribe,

C. M. Troy, M. Mercken, S. S. Jung, A. Palmeri, and O. Arancio. Endogenous amyloid-β

is necessary for hippocampal synaptic plasticity and memory. Annals of Neurology, 69(5):

819–830, May 2011. ISSN 1531-8249. doi: 10.1002/ana.22313.

A. Rambaut and A. Drummond. FigTree version 1.4. 0. 2012.

P. Rawat, R. Prabakaran, R. Sakthivel, A. Mary Thangakani, S. Kumar, and M. M. Gromiha.

CPAD 2.0: A repository of curated experimental data on aggregating proteins and peptides.

Amyloid, 27(2):128–133, Apr. 2020. ISSN 1350-6129. doi: 10.1080/13506129.2020.1715363.



11. References 182

B. Ren, Y. Zhang, M. Zhang, Y. Liu, D. Zhang, X. Gong, Z. Feng, J. Tang, Y. Chang, and

J. Zheng. Fundamentals of cross-seeding of amyloid proteins: An introduction. Journal

of Materials Chemistry B, 7(46):7267–7282, Nov. 2019. ISSN 2050-7518. doi: 10.1039/

C9TB01871A.

P. Rice, I. Longden, and A. Bleasby. EMBOSS: The European Molecular Biology Open Software

Suite. Trends in genetics: TIG, 16(6):276–277, June 2000. ISSN 0168-9525. doi: 10.1016/

s0168-9525(00)02024-2.

R. Riek and D. S. Eisenberg. The activities of amyloids from a structural perspective. Nature,

539(7628):227–235, Nov. 2016. ISSN 1476-4687. doi: 10.1038/nature20416.

D. Romero and R. Kolter. Functional Amyloids in Bacteria. International Microbiology: The

Official Journal of the Spanish Society for Microbiology, 17(2):65–73, June 2014. ISSN 1139-

6709. doi: 10.2436/20.1501.01.208.

J. J. Rosa and F. M. Richards. An experimental procedure for increasing the structural resolu-

tion of chemical hydrogen-exchange measurements on proteins: Application to ribonuclease

S peptide. Journal of Molecular Biology, 133(3):399–416, Sept. 1979. ISSN 0022-2836. doi:

10.1016/0022-2836(79)90400-5.

A. N. Round and M. J. Miles. Exploring the Consequences of Attractive and Repulsive Inter-

action Regimes in Tapping Mode Atomic Force Microscopy of DNA. Nanotechnology, 15(4):

S176, 2004. ISSN 0957-4484. doi: 10.1088/0957-4484/15/4/011.

RStudio Team. RStudio: Integrated Development Environment for r. RStudio, PBC., Boston,

MA, 2020.

A. Sakalauskas, M. Ziaunys, and V. Smirnovas. Concentration-dependent polymorphism of

insulin amyloid fibrils. PeerJ, 7:e8208, Dec. 2019. ISSN 2167-8359. doi: 10.7717/peerj.8208.

K. Sankar, S. R. Krystek Jr, S. M. Carl, T. Day, and J. K. X. Maier. AggScore: Prediction of

aggregation-prone regions in proteins based on the distribution of surface patches. Proteins:

Structure, Function, and Bioinformatics, 86(11):1147–1156, 2018. ISSN 1097-0134. doi:

10.1002/prot.25594.



11. References 183

J. Santos and S. Ventura. Functional Amyloids Germinate in Plants. Trends in Plant Science,

26(1):7–10, Jan. 2021. ISSN 1360-1385. doi: 10.1016/j.tplants.2020.10.001.

J. Santos, V. Iglesias, and S. Ventura. Computational prediction and redesign of aberrant protein

oligomerization. In Progress in Molecular Biology and Translational Science, volume 169,

pages 43–83. Elsevier, 2020. ISBN 978-0-12-817929-1. doi: 10.1016/bs.pmbts.2019.11.002.

N. C. Santos and M. A. R. B. Castanho. An overview of the biophysical applications of atomic

force microscopy. Biophysical Chemistry, 107(2):133–149, Feb. 2004. ISSN 0301-4622. doi:

10.1016/j.bpc.2003.09.001.

T. Scheibel, R. Parthasarathy, G. Sawicki, X.-M. Lin, H. Jaeger, and S. L. Lindquist. Conducting

nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition.

Proceedings of the National Academy of Sciences, 100(8):4527–4532, Apr. 2003. doi: 10.1073/

pnas.0431081100.

A. Schmidt, K. Annamalai, M. Schmidt, N. Grigorieff, and M. Fändrich. Cryo-EM reveals the

steric zipper structure of a light chain-derived amyloid fibril. Proceedings of the National

Academy of Sciences of the United States of America, 113(22):6200–6205, May 2016. ISSN

1091-6490. doi: 10.1073/pnas.1522282113.

G. Schneider and P. Wrede. The rational design of amino acid sequences by artificial neural

networks and simulated molecular evolution: De novo design of an idealized leader peptidase

cleavage site. Biophysical Journal, 66(2 Pt 1):335–344, Feb. 1994. ISSN 0006-3495.

K. Schwartz and B. R. Boles. Microbial Amyloids–functions and interactions within the host.

Current opinion in microbiology, 16(1):93–99, Feb. 2013. ISSN 1369-5274. doi: 10.1016/j.

mib.2012.12.001.

A. W. Senior, R. Evans, J. Jumper, J. Kirkpatrick, L. Sifre, T. Green, C. Qin, A. Žídek, A. W. R.

Nelson, A. Bridgland, H. Penedones, S. Petersen, K. Simonyan, S. Crossan, P. Kohli, D. T.

Jones, D. Silver, K. Kavukcuoglu, and D. Hassabis. Improved protein structure prediction

using potentials from deep learning. Nature, 577(7792):706–710, Jan. 2020. ISSN 1476-4687.

doi: 10.1038/s41586-019-1923-7.



11. References 184

S. L. Shammas, G. A. Garcia, S. Kumar, M. Kjaergaard, M. H. Horrocks, N. Shivji, E. Man-

delkow, T. P. Knowles, E. Mandelkow, and D. Klenerman. A Mechanistic Model of Tau

Amyloid Aggregation Based on Direct Observation of Oligomers. Nature Communications,

6, Apr. 2015. ISSN 2041-1723. doi: 10.1038/ncomms8025.

J. Shen, J. Zhang, X. Luo, W. Zhu, K. Yu, K. Chen, Y. Li, and H. Jiang. Predicting pro-

tein–protein interactions based only on sequences information. Proceedings of the National

Academy of Sciences, 104(11):4337–4341, Mar. 2007. doi: 10.1073/pnas.0607879104.

Q. Shu, S. L. Crick, J. S. Pinkner, B. Ford, S. J. Hultgren, and C. Frieden. The E. coli CsgB

nucleator of curli assembles to β-sheet oligomers that alter the CsgA fibrillization mechanism.

Proceedings of the National Academy of Sciences, 109(17):6502–6507, Apr. 2012. doi: 10.1073/

pnas.1204161109.

L. P. Silva. Imaging proteins with atomic force microscopy: An overview. Current Protein &

Peptide Science, 6(4):387–395, Aug. 2005. ISSN 1389-2037. doi: 10.2174/1389203054546389.

R. Simm, I. Ahmad, M. Rhen, S. Le Guyon, and U. Römling. Regulation of Biofilm Formation

in Salmonella Enterica Serovar Typhimurium. Future Microbiology, 9(11):1261–1282, 2014.

ISSN 1746-0921. doi: 10.2217/fmb.14.88.

J. D. Sipe, M. D. Benson, J. N. Buxbaum, S.-I. Ikeda, G. Merlini, M. J. M. Saraiva, and P. West-

ermark. Amyloid Fibril Proteins and Amyloidosis: Chemical Identification and Clinical Clas-

sification International Society of Amyloidosis 2016 Nomenclature Guidelines. Amyloid: The

International Journal of Experimental and Clinical Investigation: The Official Journal of

the International Society of Amyloidosis, 23(4):209–213, Dec. 2016a. ISSN 1744-2818. doi:

10.1080/13506129.2016.1257986.

J. D. Sipe, M. D. Benson, J. N. Buxbaum, S.-i. Ikeda, G. Merlini, M. J. M. Saraiva, and

P. Westermark. Amyloid fibril proteins and amyloidosis: Chemical identification and clinical

classification International Society of Amyloidosis 2016 Nomenclature Guidelines. Amyloid,

23(4):209–213, Oct. 2016b. ISSN 1350-6129. doi: 10.1080/13506129.2016.1257986.



11. References 185

M. Sleutel, I. Van den Broeck, N. Van Gerven, C. Feuillie, W. Jonckheere, C. Valotteau, Y. F.

Dufrêne, and H. Remaut. Nucleation and Growth of a Bacterial Functional Amyloid at Single-

Fiber Resolution. Nature Chemical Biology, 13(8):902–908, Aug. 2017. ISSN 1552-4469. doi:

10.1038/nchembio.2413.

J. F. Smith, T. P. J. Knowles, C. M. Dobson, C. E. MacPhee, and M. E. Welland. Character-

ization of the nanoscale properties of individual amyloid fibrils. Proceedings of the National

Academy of Sciences, 103(43):15806–15811, Oct. 2006. doi: 10.1073/pnas.0604035103.
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12 Achievements

12.1 Grants

• Deutscher Akademischer Austauschdienst (DAAD)

Research Grants - One-Year Grants for Doctoral Candidates, 2020/21 (57507870)

Proteinaceous scaffolds of biofilms produced by gram-negative bacteria

12.2 Publications

• AmyloGraph: a comprehensive database of amyloid-amyloid interactions.

Michał Burdukiewicz, Dominik Rafacz, Agnieszka Barbach, Katarzyna Hubicka, Laura

Bąkała, Anna Lassota, Jakub Stecko, Natalia Szymańska, Jakub W Wojciechowski, Do-

minika Kozakiewicz, Natalia Szulc, Jarosław Chilimoniuk, Izabela Jęśkowiak, Marlena

Gąsior-Głogowska, Małgorzata Kotulska.

Nucleic Acids Research 2022 Oct 16;gkac882. doi: 10.1093/nar/gkac882.

IF = 16.971, PM = 200

• Adhesion of Enteropathogenic, Enterotoxigenic, and Commensal Escherichia coli to the

Major Zymogen Granule Membrane Glycoprotein 2.

Christin Bartlitz, Rafał Kolenda, Jarosław Chilimoniuk, Krzysztof Grzymajło, Stefan

Rödiger, Rolf Bauerfeind, Aamir Ali, Veronika Tchesnokova, Dirk Roggenbuck, Peter

Schierack.

Applied and Environmental Microbiology 2022 Mar 8;88(5):e0227921. doi: 10.1128/aem.02279-

21.

IF = 4.792, PM = 100

• Bioinformatics methods for identification of amyloidogenic peptides show robustness to

misannotated training data.

Natalia Szulc, Michał Burdukiewicz, Marlena Gąsior-Głogowska, JakubW.Wojciechowski,

Jarosław Chilimoniuk, Paweł Mackiewicz, Tomas Šneideris, Vytautas Smirnovas Malgo-

rzata Kotulska.
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Scientific Reports (2021) 11:8934

IF = 4.379, PM = 140

• countfitteR: efficient selection of count distributions to assess DNA damage.

Jarosław Chilimoniuk, Alicja Gosiewska, Jadwiga Słowik, RomanoWeiss, P. Markus Deck-

ert, Stefan Rödiger, Michał Burdukiewicz.

Annals of Translational Medicine 2021;9(7):528

IF = 3.932, PM = 40

• Proteomic Screening for Prediction and Design of Antimicrobial Peptides with AmpGram.

Michał Burdukiewicz, Katarzyna Sidorczuk, Dominik Rafacz, Filip Pietluch, Jarosław

Chilimoniuk, Stefan Rödiger, Przemysław Gagat.

International Journal of Molecular Sciences, 21:12, 2020. 10.3390/ijms21124310

IF = 5.923, PM = 140

• Prediction of Signal Peptides in Proteins from Malaria Parasites.

Burdukiewicz M., Sobczyk P., Chilimoniuk J., Gagat P., Mackiewicz P.

International Journal of Molecular Sciences 19(12), 3709, 2018.

IF = 5.923, PM = 140

• PhyMet2: a database and toolkit for phylogenetic and metabolic analyses of methanogens.

Michał Burdukiewicz, Przemysław Gagat, Sławomir Jabłoński, Jarosław Chilimoniuk,

Michał Gaworski, Paweł Mackiewicz, Marcin Łukaszewicz.

Environmental microbiology reports 10(3):378-382, 2018

IF = 3.541, PM = 100

Total IF = 45.47, Total PM = 860

12.3 Internships

• Amyloid Research Group, Institute of Biotechnology, Vilnius University. Vilnius, Lithua-

nia.

05.12.2022-24.12.2022
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• Multiparameter Dianostic group, Institute of Biotechnology, Brandenburg University of

Technology Cottbus - Senftenberg. Senftenberg, Germany.

01.11.2021-26.12.2021

• Multiparameter Dianostic group, Institute of Biotechnology, Brandenburg University of

Technology Cottbus - Senftenberg. Senftenberg, Germany.

01.10.2020-30.09.2021

• Image Based Assays group, Institute of Biotechnology, Brandenburg University of Tech-

nology Cottbus - Senftenberg. Senftenberg, Germany.

01.03.2020-29.05.2020

• Image Based Assays group, Institute of Biotechnology, Brandenburg University of Tech-

nology Cottbus - Senftenberg. Senftenberg, Germany.

01.10.2019-16.12.2019

• Image Based Assays group, Institute of Biotechnology, Brandenburg University of Tech-

nology Cottbus - Senftenberg. Senftenberg, Germany.

01.07.2019-30.11.2019 - Erasmus+

• Image Based Assays group, Institute of Biotechnology, Brandenburg University of Tech-

nology Cottbus - Senftenberg. Senftenberg, Germany.

15.04.2019-31.05.2019

• Image Based Assays group, Institute of Biotechnology, Brandenburg University of Tech-

nology Cottbus - Senftenberg. Senftenberg, Germany.

04.02.2019-15.02.2019

• Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius

University. Vilnius, Lithuania.

02.11.2018-09.11.2018

• Multiparameter Diagnostics group, Institute of Biotechnology, Brandenburg University of

Technology Cottbus - Senftenberg. Senftenberg, Germany.

01.04-30.09.2018
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• Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius

University. Vilnius, Lithuania.

07.01-26.01.2018

12.4 Conference Talks

• Imputomics: Imputation of missing values for "Omics" data.

Metabolomics Circle, Wrocław, Poland.

Jarosław Chilimoniuk, Krystyna Grzesiak, Dominik Nowakowski, Adam Krętowski, Michał

Ciborowski, and Michał Burdukiewicz

27.01-28.01-2023

• countfitteR: count data analysis for precision medicine.

International Biotech Innovation Days 2020 (IBID), Senftenberg, Germany.

Jarosław Chilimoniuk, Alicja Gosiewska, Jadwiga Słowik, RomanoWeiss, P. Markus Deck-

ert, Stefan Rödiger and Michał Burdukiewicz

28.10-29.10.2020

• Count data analysis with countfitteR.

Why R? 2020, Warszawa, Poland.

Jaroslaw Chilimoniuk, Alicja Gosiewska, Jadwiga Slowik, Romano Weiss, P. Markus Deck-

ert, Stefan Rödiger, Michal Burdukiewicz

24.09-27.09-2020

• AmyloGram: prediction of amyloid sequences in R.

satRday, 2019, Gdańsk, Poland.

Jarosław Chilimoniuk, Michał Burdukiewicz, Piotr Sobczyk, Stefan Rödiger, Małgorzata

Kotulska and Paweł Mackiewicz.

17.05-18.05.2019

• AmyloGram: the R package and a Shiny server for amyloid prediction.

Why R? 2019, Warszawa, Poland.

Jaroslaw Chilimoniuk, Michał Burdukiewicz, Piotr Sobczyk, Stefan Rödiger, Malgorzata
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Kotulska and Pawel Mackiewicz.

26.09-29.09.2019

• PhyMet2: a database and toolkit for phylogenetic and metabolic analyses of methanogens.

PTBI: Polish Bioinformatics Society, 2018, Wrocław, Poland.

Jarosław Chilimoniuk, Michał Burdukiewicz, Przemysław Gagat, Sławomir Jabłoński,

Michał Gaworski, Paweł Mackiewicz, Marcin Łukaszewicz.

05.09-07.09.2018

12.5 Conference posters

• AmpGram – a novel tool for prediction of antimicrobial peptides.

6th Joint Conference of the DGHM VAAM, 2020, Leipzig, Germany.

J. Chilimoniuk, M. Burdukiewicz, K. Sidorczuk, F. Pietluch, D. Rafacz, S. Rödiger, P.

Gagat. 08.03-11.03.2020

• AmyloGram: prediction of amyloid sequences in R.

EuPA: XIII. Annual Congress of the European Proteomics Association: From Genes via

Proteins and their Interactions to Functions, 2019, Potsdam, Germany.

Jarosław Chilimoniuk, Michał Burdukiewicz, Piotr Sobczyk, Stefan Rödiger, Małgorzata

Kotulska and Paweł Mackiewicz.

24.03-28.03.2019

• Co-evolution of curli components CsgA and CsgB.

VAAM: Jahrestagung 2019 der Vereinigung für Allgemeine und Angewandte Mikrobiolo-

gie, 2019, Mainz, Germany.

Jaroslaw Chilimoniuk, Michał Burdukiewicz, Paweł Mackiewicz.

17.03-20.03.2019

• AmyloGram: prediction of amyloid sequences in R.

PL in ML: Polish View on Machine Learning, 2018, Warsaw, Poland.

Jarosław Chilimoniuk, Michał Burdukiewicz, Piotr Sobczyk, Stefan Rödiger, Anna Duda-

Madej, Marlena Gąsior-Głogowska, Małgorzata Kotulska and Paweł Mackiewicz.
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14.12-17.12.2018

• CsgA and CsgC - evolutionary interplay in curli biogenesis.

8th ASM Conference on Biofilms, 2018, Washington, DC, USA.

Jaroslaw Chilimoniuk, Michał Burdukiewicz, Paweł Mackiewicz.

07.10-11.10.2018

• PhyMet2: database and algorithm predicting culturing conditions of methanogens.

IBID: International Biotech Innovation Days, 2018, Senftenberg, Germany.

Jarosław Chilimoniuk, Michał Burdukiewicz, Przemysław Gagat, Sławomir Jabłoński,

Michał Gaworski, Paweł Mackiewicz, Marcin Łukaszewicz.

23.05-25.05.2018

• PhyMet2: complex database containing records on methanogens with unique feature

(MethanoGram) allowing prediction of culture conditions based on 16S rRNA.

VAAM: Jahrestagung 2018 der Vereinigung für Allgemeine und Angewandte Mikrobiolo-

gie, 2018, Wolfsburg, Germany.

Michał Burdukiewicz, Przemysław Gagat, Sławomir Jabłoński, Jarosław Chilimoniuk,

Michał Gaworski, Paweł Mackiewicz, Marcin Łukaszewicz.

15.04-18.04.2018


