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Streszczenie

Analizy bioinformatyczne i eksperymentalne bakteryjnych amyloidéw funkcjon-
alnych CsgA i CsgB

Amyloidy to biatka zwigzane z wieloma zaburzeniami klinicznymi, takimi jak choroba
Alzheimera, Creutzfeldta-Jakoba czy Huntingtona. Mimo ze bialka te sa maja zréznicowang
budowe, ich cecha wspoélng jest to, ze posiadaja strukture [-kartki i wykazuja tendencje do
agregacji. Oprocz amyloidéow niefunkcjonalnych, ktére moga przyjmowaé rozne struktury i sa
btednie ztozonymi wersjami normalnych biatek, istnieja réwniez amyloidy funkcjonalne, ktore
spetniaja wazne funkcje komoérkowe. Jednymi z nich sg biatka curli, CsgA i CsgB, ktore staty
sie przedmiotem niniejszej rozprawy.

W ramach tej rozprawy dokonaliémy eksperymentalnej walidacji naszego oprogramowania
AmyloGram do przewidywania biatek amyloidowych z wykorzystaniem tioflawiny T (ThT) oraz
mikroskopii sit atomowych (AFM). Algorytm skutecznie rozpoznal eksperymentalnie potwierd-
zone peptydy i byl odporny na przeuczenie. Sposrod 24 testowanych peptydow, znalezlismy 16,
ktore miaty niepoprawne adnotacje w bazie AmyLoad.

Stosujac bardziej obiektywne wyszukiwanie motywow, znalezliSmy pie¢ powtarzajacych sie
regionéw w sekwencjach CsgA i CsgB. Regiony w CsgA sa rozdzielone, maja 21 reszt i 9 miejsc
konserwatywnych, podczas gdy te w CsgB sa przylegte do siebie, maja 22 reszty i 7 miejsc
konserwatywnych. Regiony te charakteryzuja sie specyficznym rozmieszczeniem reszt polarnych
i hydrofobowych, a takze posiadaja centralna glicyne, ktora rozbija dwie wstegi f w danym
regionie. Stosujac dokladniejsze poréwnania sekwencji, odkrylismy dodatkowy region, ktory
jest umieszczony przed pozostalymi. Wykazuje on istotne podobieristwo do nich na poziomie
sekwencji i potencjalnie moze przyjmowac struktury f.

Aby odpowiedzie¢ na pytanie, jak ewoluowaly biatka CsgA i CsgB, zebralismy ponad 15,000
ich homologéw z konserwatywnymi domenami curli. Wiekszo$é z nich zawiera rowniez typowy
N-terminalny peptyd sygnatowy. Rozlegle analizy filogenetyczne wykazaly, ze biatka te ewolu-
owaly gléwnie u Bacteroidota, a-Proteobacteria i «y-Proteobacteria. CsgA i CsgB okazaly sie
odlegtymi homologami i pojawily si¢ w wyniku duplikacji, gdy ~v-Proteobacteria oddzielity sie od

a- i B-Proteobacteria. Homologi te prawdopodobnie doswiadczaly poziomego transferu genéow
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pomiedzy réznymi grupami bakterii, a takze do grzybow.

Zbadalismy rowniez szczegotowo biatka CsgA i CsgB u Enterobacterales. Ich pie¢ zdup-
likowanych regionéw wykazuje odpowiednio siedem i sze$¢ konserwatywnych miejsc, w tym
reszty glicynowe, hydrofobowe i polarne, ktére sa kluczowe do formowania struktur 5.
Poszczegodlne regiony ujawnity rézne tempo substytucji. Regiony CsgA ewoluowaly szybciej niz
CsgB. Region 5 wykazal najnizsza dywergencje, co jest prawdopodobnie wynikiem selekcji na
interakcje z regionem 1 innych czasteczek bialtek curli. Zauwazyliémy ponadto duze korelacje w
dystansach ewolucyjnych regionéw, co sugeruje ich skoordynowang ewolucje. Silniejsze korelacje
w substytucjach zaobserwowalismy w regionach CsgA, co oznaczaloby, ze interakcje miedzy tymi
regionami w tym biatku powinny byé¢ bardziej konserwatywne niz w CsgB.

Ponadto oczyszczaliSmy wybrane warianty CsgA i CsgB, ktére mialy usuniete regiony i
badalismy wplyw tych regionéw na szybkos¢ agregacji przy uzyciu eksperymentéw ThT i AFM.
Stwierdziliémy, ze proces ten moze byé¢ spowalniany przez region 1, podczas gdy region 5 jest
niezbedny do polimeryzacji fibryli amyloidowych ze wzgledu na interakcje z regionem 1 innych
czasteczek CsgA.

Poszukiwalisémy takze cech charakterystycznych dla sekwencji amyloidow funkcjonalnych i
niefunkcjonalnych. Mimo ze amyloidy te sa zréznicowane, odkryliémy specyficzne cechy, ktore
moga by¢ wykorzystane do ich rozpoznania. Mate hydroksylowane aminokwasy, seryna i treon-
ina, wspotwystepujace z innymi matymi aminokwasami, jak glicyna i alaning, a takze z polarna
asparaging i kwasem asparaginowym, sa bardzo rozpowszechnione w amyloidach funkcjonalnych.
Natomiast bardziej zasadowe aminokwasy, hydrofobowa leucyna, metionina i cysteina oraz po-
larna tyrozyna dominuja w amyloidach niefunkcjonalnych. Na podstawie sktadu dipeptydow
i wskaznikow aminokwasowych opracowalismy model laséw losowych, ktory z powodzeniem
przewiduje amyloidy funkcjonalne i niefunkcjonalne.

Wreszcie, opracowalismy baze danych interakcji amyloidowych AmyloGraph, ktora gromadzi
wiedze dotyczaca tego, jak dany amyloid wpltywa na inny. Znalezliémy interakcje pomiedzy
biatkami curli a innymi, 48 dla CsgA i 14 dla CsgB. Dzieki tej bazie danych mozemy dowiedzie¢

sie, jak biatka amyloidowe oddziatuja ze soba i wptywaja na proces agregacji.
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Abstract

Amyloids are proteins associated with many clinical disorders, such as Alzheimer’s,
Creutzfeldt-Jakob and Huntington’s diseases. Although these proteins have diverse structures,
they share [-sheet structure and have a tendency to aggregate. Besides the non-functional
amyloids, which can adopt various structures and are misfolding versions of normal proteins,
there are also functional amyloids, which fulfill important cellular functions. Ones of them are
curly proteins, CsgA and CsgB, which became the subject of this thesis.

In the framework of this dissertation, we experimentally validated using Thioflavin T (ThT)
assay and Atomic Force Microscopy (AFM) our software AmyloGram for predicting amyloid
proteins. The algorithm recognized experimentally confirmed peptides effectively and was re-
sistant to overfitting. Out of 24 tested peptides, we found 16 that had inaccurate annotations
in the AmyLoad database.

Using more objective motif searching, we have found five repetitive regions in CsgA and
CsgB sequences. The repeating motifs in CsgA are separated, and have 21 residues and nine
conserved sites, whereas those in CsgB are adjacent, and have 22 residues and seven conserved
sites. The regions are characterized by a specific distribution of polar and hydrophobic residues
as well as the central glycine, which breaks two (-strands in a given region. By using a more
accurate sequence comparison, we discovered an additional region that is positioned before the
others and shows significant sequence similarity to them and may potentially fold into S-strands.

To answer the question of how evolved CsgA and CsgB proteins, we collected more than
15,000 their homologs with conserved curlin domains. The majority of them also include the
typical N-terminal signal peptide. Broad phylogenetic analyses showed that these proteins
evolved predominantly in Bacteroidota, c-Proteobacteria, and - Proteobacteria. CsgA and CsgB
turned out remote homologs and emerged by duplication when gamma-Proteobacteria diverged
from «- and (-Proteobacteria. The homologs probably experienced horizontal gene transfer
between various bacterial groups and also to fungi.

We also studied in detail CsgA and CsgB in Enterobacterales. Their five duplicated regions
show seven and six conserved sites, respectively, including glycine, hydrophobic, and polar

residues, which are crucial for folding into (-strands. The individual regions revealed various
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substitution rates. CsgA regions evolved more quickly than in CsgB. Region 5 has the lowest
rate of divergence, which is likely a result of the selection on interactions with region 1 of other
curly molecule. We noticed high correlations in evolutionary distances in the regions, which
suggests their coordinated evolution. Stronger correlations in substitutions were seen in CsgA
regions, which would mean that interactions between these regions in this protein should be
more conserved than in CsgB.

In addition, we purified selected CsgA and CsgB variants that had deleted regions and
studied the influence of these regions on the rate of aggregation using ThT assay and AFM.
We found that the process can be slowed down by region 1, whereas region 5 is essential for the
polymerization of amyloid fibrils due to interactions with region 1 of other CsgA molecules.

Moreover, we searched for sequence features characteristic of functional and non-functional
amyloids. Despite that these amyloids are diverse, we discovered specific traits that may be
used to recognize them. Small hydroxylated amino acids, serine, and threonine co-occurring with
other tiny glycine and alanine, as well as polar asparagine and aspartic acid, are highly prevalent
in the functional amyloids. But more basic amino acids, hydrophobic leucine, methionine, and
cysteine, and polar tyrosine dominate in the non-functional amyloids. Based on dipeptide
composition and amino acid indices, we elaborated a random forest model, which successfully
predicts the functional and non-functional amyloids.

Finally, we developed an amyloid interaction database AmyloGraph, which gathers knowl-
edge regarding how a particular amyloid affects another. We found interactions between curly
amyloid proteins and others, 48 for CsgB and 14 for CsgB. With the help of the database,
we can find out how amyloid proteins interact with each other and influence the aggregation

process.
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1 Introduction

1.1 General characteristics of amyloids

Amyloid proteins are a peculiar group of proteins that demonstrate a unique ability to as-
sembly into supramolecular filamentous aggregates (fibrils) characterized by the presence of
characteristic cross-f3 sheets. Amyloid fibrils are highly ordered, long, straight, and unbranch-
ing, as shown by microscopy, X-ray diffraction, and crystallography studies. These fibrils are
extremely resistant to degradation by proteolysis, sodium dodecyl sulfate (SDS), and other
detergents [Knauer et all 1992 Chapman et al.| 2002, Toyama and Weissman) 2011].

Amyloid fibrils are usually made of subunits named protofilaments, which in most cases curl
up around each other to form the mature fibril [Goldsbury et al. (1999, |Jiménez et al., 2002].
Both natural and synthetic amyloid fibrils share a particular core structure. It consists of a (-
sheet conformation, in which the direction of S-strand hydrogen bonds runs along the g-strand
length and parallel to the fibril axis [Inouye et al., 1993, Makin and Serpell, 2005]. The /-
sheet ribbons are associated via side-chain interactions that stabilize the structure [Makin et al.|
2005). The cross-/-sheet structure can be parallel or antiparallel within the protofilaments. The
arrangement of such a fibril depends on the properties of the protein from which it originates
|Gordon et al., 2004, |Petkova et al., 2005|.

The propensity of a protein to form amyloid fibrils depends on several factors, such as amino
acid sequence, electric charge, and hydrophobicity. Although the vast majority of amyloid fibrils
display a similarity at the secondary structural level, they show little similarity in their amino
acid composition |Eisenberg and Sawaya, 2017, Tadanza et al., 2018]. To describe in detail the
exact mechanism of amyloid fibril formation, we need to first define the differences between

various assembly states of amyloid proteins.

1.2 States of amyloid protein assembly
1.2.1 Monomers and oligomers

A monomer is a molecule that is a basic building block of proteins. One monomer can react

with other monomers in a polymerization process to create a much bigger macromolecule, an
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oligomer, or a polymer. Both show a regular repeating structure, but the oligomer has a lower
molecular weight than the polymer, although the boundary between their weight is arbitrary.
Monomers can be divided in various ways: synthetic and natural (biopolymers), polar and
non-polar, or cyclic and linear [Naka, 2014].

Amyloid oligomers are formed in the polymerization of monomers in a regular and repeating
fashion. They are supramolecular structures that are often named as amorphous or soluble
aggregates. They represent an intermediate form between the monomer and the amyloid fibril,
which is extremely important in the formation of new filamentous aggregates by a wide vari-
ety of amyloidogenic proteins [Narayan et al., 2012, Shammas et al., 2015]. They are highly
heterogeneous in size, structure, and stability. Unlike amyloid fibrils, oligomers are soluble in
solutions and have different structural and functional properties [Grundke-Igbal et al., [1986].

The stability of oligomers is supported by a wide range of interactions with each other.
Typically, the interface between the units is formed by a central, adjacent hydrophobic patch
surrounded by hydrophilic residues and water molecules at its periphery. In addition, many
hydrogen bonds stabilize the structure. The oligomers typically contain specific structural
motifs such as coiled coils, leucine zippers, and helix-loop-helix, which are responsible for the

formation of a-helices. In the case of S-sheet, coiled-coil motifs dominate |Garratt et al., 2013].

1.2.2 Polymers and amyloid fibrils

Polymer is a class of very large complex compounds. They are created by the polymerization
of multiple monomers (Fig. . When they are built of monomers of the same chemical com-
position, molecular weight, or structure, they are called homopolymers, whereas those derived
from more than one species of monomer are named copolymers |[Naka) 2014].

Amyloid fibrils have a unique structure characterized by the cross--sheet, where [-strands
run crosswise to the main fibril axis. Each fibril consists of several protofilaments that are
laterally coupled, and each protofilament consists of multiple oligomers. Distinctive features
of protofilaments are cross-/3 structures with g-strands, which are stacked perpendicular to the
long axis of the fibril. They usually have a width of 5-20 nm, polar topology, a left-handed
supertwist, and a twofold helical symmetry [Riek and Eisenberg, 2016| Schmidt et al., [2016],
Fitzpatrick et al., |2013 /Annamalai et al., 2016, Ke et al., [2020, Tadanza et al., 2018|.
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O monomer @
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OO timer oligomer amorphous oligomer
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structured oligomer
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Figure 1: Amyloid fibril organization

Amyloid fibrils are highly polymorphic. The structural differences between them depend
on the particular polypeptide chain from which they are assembled. Polymorphism of amyloid
fibrils can be observed in both in vitro and in vivo. Changing environmental conditions during
fibril formation result in fibril morphologies that are quite different from native ones. This

makes the prediction of amyloid fibril structure much more complicated than protein folding

[Meinhardt et al. 2009, [Fitzpatrick et al., 2013, |Annamalai et al., 2016, Kodali et al., 2010|
‘Anfinsen, 1973].
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1.3 Stages of amyloid self-assembly

Recently, the theory of amyloid fibrils self-assembly has been formulated [Hellstrand et al.

2009|. It postulates that the formation of a mature amyloid fibril has to initiate the process
called nucleation, which proceeds in two stages, primary and secondary nucleation. In primary

nucleation, monomers, of which the protofilaments are composed, associate into small aggregates

(Fig. [2A). It is done without involving already formed aggregates [Tornquist et all, [2018].

The formation of the first nuclei from the monomers requires very high energy. It is needed
to transition from their native to the amyloid state. Kinetics of the amyloid formation, for
amyloid-prone proteins, are characterized by a slow, rate-limiting nucleation step
. The secondary nucleation (Fig. ) occurs when the first amyloid-competent nuclei are
already formed. This process requires at least three molecular events: I) the arrival of monomers
to the surface of the fibril, II) the formation of monomers prone to aggregation, and III) the

release of aggregation-prone monomers. The secondary nucleation, in contrary to the primary

one, saturates at higher concentrations of monomers [Meisl et al., 2014} [Térnquist et al., 2018].

Figure 2: The primary and secondary nucleation. A. In the primary nucleation, monomers
of one protofibril nucleate in a solution. B. The secondary nucleation involves the nucleation of
monomers on the surface with an already existing amyloid aggregate. Light yellow circles symbolize

monomers and oligomers, and the dark blue rectangles protofibrils.
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1.4 Determinants of amyloid aggregation

One of the amyloid feature is a tendency to their aggregation. This process can compete
with protein folding |Tartaglia et al., 2008, |Jahn and Radford, [2008, |Chiti and Dobson, 2017|
because these two processes depend on the physicochemical properties of amino acid side chains.
Although, we can also call this process polymerization. Aggregation is described as a non-specific
process, while polymerization is described as a specific one. However, during the formation of
amyloid aggregates, both processes can occur simultaneously |[Frieden, [2007].

In the amyloid aggregation, their polypeptide chains might be also responsible for the propen-
sity of molecules to aggregate. The ability of a protein to adopt a functionally specific and ther-
modynamically stable three-dimensional structure, as well as the transition from the unfolded
state to the native conformation, is encoded in the protein’s primary structure, i.e. its amino
acid sequence.

This encoding of the protein structure in the amino acid sequence of the protein suggests
that aggregation determinants in polypeptide chains are found not only in proteins responsible
for various diseases but also in non-toxic ones, which are also able to form oligomers due to
abnormal wrapping or so-called functional amyloids, which have some function in organisms.

Studies of the de Groot et al. [2005] indicated that the presence of so-called “hot spots” or
protective residues are responsible for such sequence properties as hydrophobicity, a tendency to
adopt a (-sheet structure. The hot-spot theory has been confirmed by analyzing aggregation-
prone sequences that were devoid of defined three-dimensional conformations [Santos et al.
2020].

Hydrophobicity is one of the main forces responsible for binding both internally and exter-
nally the amino acid chains. At the same time, this force influences the formation of oligomers
|[Riek and Eisenberg), [2016| Durell and Ben-Naim)|, [2017]. This is confirmed by studies conducted
by |[Jahn and Radford [2008| during which polar residues were swapped for non-polar ones, re-
sulting in a higher tendency of proteins to aggregate. The secondary structure is also important
in amyloid aggregation. A larger amount of [-sheet structures was detected in proteins capable
of aggregation, which increases their stability by forming hydrogen bonds between the main
polypeptide chains [Ventural 2005, Kulandaisamy et al., 2017].

Hot spots are short amino acid sequences that have a high tendency to aggregate and are
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responsible for protein oligomerization. They are characterized by the presence of numerous
hydrophobic residues, both aliphatic (Val, Leu, Ile) and aromatic (Phe, Tyr, Trp) ones [Ventura
et al., 2004]. The hot spots can be generated by just one inappropriate mutation in a protein,
which can start its aggregating. One mutation will not significantly increase the overall hy-
drophobicity of the protein, but will significantly affect the rate of aggregation |Carija et al.|
2017).

1.5 Functional and non-functional amyloids

Amyloids can be divided into two groups. One includes functional amyloids, containing
proteins that can be utilized in many organisms to fulfill a variety of functions [Blanco et al.
2012, |Schwartz and Boles, 2013, Balistreri et al. [2020]. The second group, non-functional
amyloids are associated with various neurodegenerative diseases, caused by protein misfolding
[Cooper et al., |1987, Prusiner, |1996]. Both groups share similar structural and biochemical
properties. The functional amyloids are assembled by highly regulated biosynthetic pathways
[Blanco et al} 2012], whereas the non-functional ones can change their conformation which leads

to loss of function and is associated with many diseases.

1.5.1 Functional amyloids

The functional amyloids were detected in many bacteria, fungi, insects, plants and mammals
(Tab. , where they fulfill crucial molecular and cellular functions|Romero and Kolter, 2014,
Santos and Ventura, [2021]. The amyloid proteins produced by bacteria, in most cases, perform
physiological tasks on the cell surface. They are involved in biofilm formation, adhesion, host-
pathogen interactions and host cells invasion. We can distinguish here, e.g., curli proteins,
which are produced by FEscherichia coli and Salmonella spp. [Chapman et al., 2002, |Wang
and Chapman) 2008|, Pseudomonas fluorescens FapC protein [Dueholm et al., [2010|, chaplins
formed by Streptomyces spp. |Elliot et al. 2003| and Xanthomonas axonopodia harpins [Oh
et al., 2007]. The mechanism of biofilm formation by Fap is highly similar to that of E. coli
curli proteins |[Dueholm et al) 2013]. All of these proteins are fully functional and help the

bacteria to promote multiple interactions between other them and other microbes.
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HET-s protein present in fungus Podospora anserina is responsible for the fusion of com-
patible heterokaryons, i.e. multinucleate cell that contains genetically different nuclei [Wasmer
et al., 2008, Turcq et al) [1991]. The process is called heterokaryon incompatibility and en-
sures that during spontaneous, vegetative cell fusion only compatible cells from the same colony
survive.

Functional amyloids can also be found in various multicellular organisms. Hevbl1 is a Rubber
Elongation Factor in Hevea brasiliensis and takes a part in the biosynthesis of natural rubber
but could be also involved in defense/stress mechanisms|Berthelot et al., 2012]. Cn-AMP2 is an
antimicrobial peptide found in Cocos nucifera |Gour et al., 2016] and RsAFP-19, an antifungal
peptide present in Raphanus sativus |Garvey et al., [2013]. Vicilin from Pisum sativum L. takes
a part in detergent resistance and also displays antifungal activity [Santos and Ventura) 2021].
Spider’s spidroin and silkworm fibroin are known to form insoluble silk. Fibroin is a structural
element of silk, which had been successfully applied for various biomedical purposes [Zhang
et al., [2012].

Functional amyloids were also identified in mammals. Pmell7 helps the maturation of
melanosomes, leading to the synthesis of melanin, which protects cells against UV radiation
and oxidative damage |Fowler et al.) 2006]. There is also a shred of evidence that peptides
and protein hormones, found in secretory granules of the endocrine system, are stored in the
cross-f-sheet conformation as typical amyloids [Maji et al., 2009]. Interestingly, Ripl and Rip3
kinases can be also considered as functional amyloids. They are involved in necroptosis, a type
of programmed cell death with necrotic morphology. Motifs found in these proteins mediate the

assembly of heterodimeric filamentous structures |Li et al., [2012} Liu et al.; [2019].

1.5.2 Curli proteins

Curli proteins are typical functional amyloids produced by gram-negative bacteria, mostly
Enterobacteriales, are CsgA and CsgB |[Dueholm et al. 2012]. These proteins are exported
outside the cell into the extracellular matrix, where they participate in biofilm formation. The
biofilm also includes other proteins and polysaccharides, which protect multicellular communi-
ties from chemical and physical stresses. Living in biofilms provides benefits because biofilmic

bacteria are more resistant to antibiotics and the host’s immune system [Simm et al., 2014}
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Jamal et al., 2015].

The main curli protein, involved in the development of biofilm scaffolds, is CsgA. It is a 151-
residue amyloid protein, encoded by csgBAC operon. This protein consists of the 22-residue
signal peptide targeting this protein outside the cell, and the amyloid core domain, whose
sequence includes five non-identical repeats (R1-R5). Each of these regions contains a common,
highly conserved motif (Ser-X5-Gln-X-Gly-X-Gly-Asn-X-Ala-X3-Gln) (Fig. [Barnhart and
Chapman, 2006, [Evans and Chapman), 2014, Chapman et al. 2002|. When CsgA is incorporated
into an amyloid fibril, a strand-loop—strand motif in each repeat stacks between the neighboring
repeats and is stabilized by hydrogen bonds in a -sheet. CsgA fibrils are resistant to chemical
and proteolytic degradation. These fibrils can be identified by dyes, e.g., thioflavin T (ThT)
and congo red (CR), binding to the amyloid. The amyloid fibrils can also be visualized under
transmission electron microscopy (TEM) or atomic force microscopy (AFM) [Malmos et al.)
2017b|, [Erskine et al.| 2018].

In order to CsgA could start creating the fibrils, an initiator is necessary. Such a role is
fulfilled by a nucleator CsgB, another curly protein encoded in the csgBAC' operon. Similar
to CsgA, it also contains a signal peptide, 23 amino acid residues long, and an amyloid core
domain, which also includes five repeating units (Fig. . However, only the regions R1-R4
contain a common conserved motif (Ala-X3-Gln-X-Gly-X2-Asn-X-Ala-X3-Gln). The R5 instead
contains four positively charged amino acids (one lysine and three arginines), which are absent
from the other repeating units [Barnhart and Chapmanl [2006| [Dueholm et al., 2012, Evans and
Chapman, 2014} (Chapman et al., [2002, Dunbar et al.| 2019].

Although each repeat shows a similarity with others, they are not functional equivalents.
The repeats R1 and R5 in CsgA form amyloid fibrils and are critical to the CsgA seeding ability
and the nucleation by CsgB. The internal repeats R2-R4 contain ’gatekeeper’ residues that
modulate the amyloid formation by softening the amyloidogenicity of CsgA. The exposure of
R1 or R5 on the growing tip of a curli fibril contributes to its efficient elongation. They provide
a recognition site for subsequently secreted CsgA monomers [Wang et al., [2008].

The interchangeability of CsgA regions was studied by Wang et al,| [2010]. These authors
used bacteria with the deletion of csg operon genes and complemented them with constructed

plasmids. The replacement of the R1 region by R5 and wice versa had no major impact on the
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CsgA
Signal peptide N22 -
MKLLKVAAIAAIVFSGSALA GVVPQYGGGGNHGGGGNNSGPN [S|IEL N | Y[Q] Y[G|G|G|IN|S|A|lL A L[Q]T DARN R1
SIDLT | T|Q|H|G|G|G|N|G|AID VG|Q|G SDD R2
CsaB S[SI D LT|Q R|G|FIGIN|[SATLDQWNGKN R3
g SI[EMTVK|Q| F|G|G|G|IN[GAAV DIQ T ASN R4
Signal peptide N23 S| | G|
MKNKLLFMMLTILGAPGIAAA  AGYDLANSEYNFAVNELSKSSFN QA|A[l TGQA GITN NSIAQ L RQIGGS K R1
L L|Al[VVARQIE |G|SSN|IRIAIK | D|Q|T GDY R2
N L|AlY | D|Q|A |G|SAN|D|A|S | S|Q|G AY G R3
N T|IAM 1 | |Q K |GSGINIKIAIN | T|Q|]Y GT Q R4

Figure 3: Sequence organization of CsgA and CsgB proteins. They consist of a signal peptide,
a separating sequence (N22 and N23) and the non-identical repeating units (R1-R5), which were

aligned. Boxed columns represent amino acids conserved throughout the repeating units in one or

both proteins. Modified from |Hammer et al.| l2007l.

formation of amyloid fibrils. In contrast, the replacement of the above-mentioned regions with
R3 resulted in a decrease in this formation. Furthermore, the plasmid including gene CsgA with
interchanged regions R1 and R5 could not compensate the lack of CsgA and CsgB. However,
the plasmid with only R1 and R5, deprived of the gatekeeping regions (R2, R3, and R4), was
able to form fibrils [Wang et al. 2008, 2010].

In the case of CsgB, the repeats R4 and R5 are responsible for the CsgA nucleation in vivo.
The mutation in these regions caused that this protein was not localized in the outer membrane,

instead, it was secreted into the extracellular matrix, but the deletion of regions R1, R2 or R3

had no impact on the nucleation [Hammer et al., [2012].

Although these experiments revealed the importance of the individual repeats in amyloido-
genicity, they were conducted on selected curly proteins and bacteria, which likely do not rep-
resent their whole variation. It is also not known how their unique sequence organization origi-

nated and evolved. Current analyses of curli proteins included only the closest homologues and

did not explore this subject [Dueholm et al., [2012]. The curli proteins and their distant homo-

logues may be more widespread in the bacteria world than it is commonly assumed. Moreover,
the mechanism of interaction between CsgA and CsgB is still not known in detail. Finding evo-
lutionary conserved and variable sites in their sequences can help to determine their functional

and structural significance. Therefore, we decided to study these issues in this project.
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1.5.3 Non-functional amyloids

Many different proteins or peptides are known to form non-functional amyloids (Tab. . In
a native state, they fulfill normal functions but after misfolding, they aggregate and can cause
many diseases.

Some of them are involved in human disorders called amyloidoses [Baker and Rice, 2012).
These proteins are amyloid-5 (Af) present in Alzheimer’s disease, a-synuclein in Parkinson’s
disease, huntingtin in Huntington’s disease, and f5-microglobulin (52M) in dialysis-related amy-
loidosis [Vidal and Ghetti, 2011} Sipe et al.|, 2016a, Knowles et al., 2014, |Chiti and Dobsonl, 2017].
They can also occur in other types of disorders like type II diabetes [Hull et al., 2004]. Pri-
ons (PrP) cause Creutzfeldt-Jakob disease and other transmissible spongiform encephalopathies
|Gibbs et al., 1968|.

Fibrils of previously mentioned amyloids can accumulate in extracellular plaques, which
might disrupt cellular physiology by blocking the transport of proteins and other non-protein
components to the cell [Sipe et al., 2016b, Drummond et al., 2017|. Almost all proteins, which
can turn into amyloids, have known functions but in their native state. When the proteins
adopt the cross- structure, it transforms the molecules into solid fibrils, causing the loss of
function.

It was found that several lipoproteins, antibodies and TAPP (Islet Amyloid Polypeptide),
but in the amyloid form, are not able to fulfill their primary functions, which leads to Apo-Al
amyloidosis, light-chain amyloidosis and diabetes [Malmberg et al., 2020].

The most studied non-functional amyloids, which cause neurodegenerative disorders, are
AB, PrP and a-syn. In the native state, AS is important for synaptic plasticity and memory
[Puzzo et al.| 2011]. PrP is involved in myelin maintenance and cellular proliferation processes
|Legnamel 2017], whereas a-syn takes a part in the regulation of neurotransmission and response

to cellular stress |Benskey et al., [2016].
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Table 1: List of various proteins forming amyloid fibrils.

Protein name Functional Function
amyloid
AIMP2 no takes a part in the assembly of the aminoacyl-tRNA synthase
complex
Albumin no functions as a transporter for a diverse range of molecules,

including hormones, vitamins, and enzymes

a-crystallin no major lens protein

a-lactalbumin no regulates the lactose production in milk

a-S2-casein no unknown function

a-synuclein no plays multiple roles in synaptic activity

Amyloid B no plays an important role in neural growth and repair
Apolipoprotein A-I no takes a part in the transport of cholesterol to the liver
Apolipoprotein E no involved in fat metabolism

[-casein no phosphoprotein found in milk

[B-crystallin no structural protein of unknown function
B-lactoglobulin yes transport protein

[G-parvalbumin yes involved in muscle relaxation

B2-microglobulin no lymphocyte surface modulator and potential regulator of the

immune system

Bri2 yes potential regulator of amyloid-3 protein precursor processing

CRES yes involved in sperm development and maturation

CRES3 yes might be involved in spermatogenesis

CsgA yes involved in biofilm formation

CsgB yes involved in biofilm formation

Cystatin C no inhibits cysteine proteases

Cytochrome C no involved in the electron transport chain in mitochondria and
apoptosis

delta-toxin no lyses erythrocytes and other mammalian cells

DJ-1 no regulates transcription and signal transduction pathways

FapC yes involved in biofilm formation

Fibroin yes core component of silk filament

FUS no RNA-binding proteins regulating transcription

~-crystallin no major lens protein

GroES no inhibitor of ATP hydrolysis

HET-s yes involved in heterokaryon incompatibility process

IAPP no maintain glucose levels

Insulin no carbohydrates and fat metabolism regulator
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Table 1: List of various proteins forming amyloid fibrils. (Continued).

Protein name Functional Function
amyloid
K-casein no phosphoprotein found in milk
Lysozyme no antimicrobial agent
Medin (AMed) no induces endothelial dysfunction and vascular inflammation
Myoglobin no serves as a reserve supply of oxygen for muscles
Newl (NU+) yes involved in translation, termination, and recycling
po3 no plays an essential role in tumor suppression
p73 no plays an essential role in tumor suppression
Pmell7 yes mediates formation of melanosomes
Polyglutamine (polyQ) no stabilizes protein interactions
proSP-C no stabilization of the protein structure
PrP no receptor of S-amyloid peptide oligomers
PSMal yes might be involved in biofilm structuring
PSMa2 yes might be involved in biofilm structuring
PSMa3 yes might be involved in biofilm structuring
PSMao4 yes might be involved in biofilm structuring
PSM§51 yes might be involved in biofilm structuring
PSMp2 yes might be involved in biofilm structuring
Rnql (PIN+) no unknown function
S100A9 no calcium binding proteins
Sericin yes joins two fibroin filaments forming a silk yarn
Serum amyloid A no acute-phase protein
SEVI (PAP 248-286) yes increase the infectivity of HIV
Sup35 (Psi+) yes factor of translation termination
Tau no plays a role in a broad range of biological processes
TDP-43 no performs several mRNA-related processes in the nucleus
Transthyretin no thyroxin transport and retinol binding
Tubulin no forms microtubules
Vicilin yes involved in detergent resistance and antifungal activity

1.5.4 Prions

Prions, i.e. proteinaceous infectious particles, are a special group of non-functional amyloids.

Unlike normal amyloids, their aggregation becomes self-perpetuating and infectious. Prions
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can infect not only individuals among the same species but also between different species.
In mammals, prions cause various progressive neurodegenerative brain disorders, known as
transmissible spongiform encephalopathies [Aguzzi and Calella, 2009]. They include scrapie in
sheep [Wood et al., [1992], bovine spongiform encephalopathy (BSE) in cattle [Wells et al., [1987],
and Creutzfeldt-Jakob disease in humans |Gibbs et al.| [1968]|. However, in fungi, they play an
important role in epigenetic inheritance [Chien et al.,[2004]. Prions consist of PrP5¢, which are
abnormally folded and protease-resistant forms of the physiological cellular versions of the PrP®
[Bolton et al., [1982]. Most of the PrP5¢ as other amyloids, are highly resistant to proteases,
heat, and decontamination methods. However, some evidence shows that these properties do
not correlate with infectivity because the majority of infections are associated with oligomers
that are proteinase-sensitive |[Aguzzi and Lakkaraju, 2016|.

The aggregation of prions reassembles those in other amyloids. Highly ordered PrPS°
oligomers incorporate soluble PrP¢. Large PrP> fibrils can break into smaller fragments, each

of which can initiate a new aggregation cycle |[Cox et al., 2003].

1.6 Experimental confirmation of amyloid-like assembly

We can divide amyloid examination methods into two types, direct and indirect. The direct
method is when protein content is calculated based on the analysis of amino acid residues to get
the results. The indirect technique is when we infer results from other compounds or reactions,
e.g. nitrogen determination or chemical reactions with functional groups within a protein. These
methods are not always accurate, as they usually require protein extraction and purification for

further analysis. In addition, various mathematical calculations are required to obtain a result.

1.6.1 Thioflavin T assay

One of the most commonly used methods to detect amyloid fibrils is based on the ben-
zothiazole dye — thioflavin T |Giehm and Otzen, 2010|. It binds to cross-/3-sheet structures
commonly present in amyloids. The interaction of fibrils with ThT is highly specific within
proteins, which makes it an excellent fluorescent probe for all known amyloidogenic proteins
and peptides, regardless of their origin [Malmos et al., 2017a).

The mechanism of ThT action and the enhancement of its fluorescence upon binding to
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amyloid is related to the rotational immobilization of the central C-C bond, which connects
the benzothiazole and aniline rings [Srivastava et al., 2010, Voropai et al., 2003|. It is widely
recognized that ThT binds to side chains along the long axis of amyloid fibrils. In addition,
the binding site of ThT on the fibril surface is believed to involve at least four -sheet subunits
[Krebs et al, 2005, Wu et al., [2009, Biancalana et al., 2009].

ThT displays an enhanced fluorescence and dramatic shift of the excitation maximum (from
385 nm to 450 nm) and emission maximum (from 448 nm to 482 nm) |Biancalana and Koide,
2010, |LeVine, |1993]. In 1989 Naiki et al. [1989] proved that the fluorescence emission of ThT
shows a linear relationship between the amyloid fibril concentration and the emission intensity.
ThT concentrations at 20-50 pM have been shown to give the highest fluorescence intensity.
However, a higher concentration can affect the amyloid formation, although this is protein-
dependent. The concentration of 10-20 pM is recommended for studying the kinetics of amyloid
aggregation, whereas 50 pM ThT is recommended for quantifying pre-formed amyloid fibrils
[Xue et all 2017].

So far, recent studies contradict the linear relationship of ThT in the substoichiometric
concentration range. This may be due to the sensitivity of ThT to self-quenching during binding
to amyloid. To prevent this, excess or equimolar concentrations of ThT, whose self-quenching
ceases at higher ratios, should be used. This can also result in the saturation of ThT binding to
amyloid fibrils, which is less variable over time |Sulatskaya et al., 2014} Lindberg et al., 2017].

The use of ThT also has disadvantages. Thioflavin is capable of binding to DNA, cyclodex-
trin or SDS micelles. Moreover, in the case of amyloids, it can bind to the surface of fibrils. For
this reason, this method should be used with caution, and we should be sure which compounds
are in the solution to eliminate those that can co-react. The ThT emission is also affected by pH,
ionic strength, buffer viscosity and type of amyloid fibrils. In addition, some small molecules
may have a similar structure to ThT and compete with the binding site. ThT assay is also

unable to fully detect early amyloid aggregates [Malmos et al 2017a].

1.6.2 Atomic Force Microscopy

Atomic Force Microscope (AFM) was originally developed as a technique for surface char-

acterization in solid material science. Nowadays, it is used in vast areas of research and became
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one of the most powerful tools in biology, materials science, and nanotechnology |[Adamcik and
Mezzenga, 2012].

AFM is a scanning probe method that relies on the piezo-driven movement of a sharp probe
tip across a sample surface, generating deflections in the cantilever attached to the probe.
A topographical map is created from deflections from each scanned pixel. AFM does not
rely on light or electron beams for imaging, which makes that the resolution is not limited by
diffraction. Since the AFM does not need vacuum conditions to operate effectively, it has become
an invaluable tool for scientists interested in studying surfaces at the nanoscale. This can provide
a view on the structural and morphological characteristics of amyloid fibrils, which includes their
contour, length, width, height, periodicity or high-order assembly of single protofilaments into
mature fibrils [Round and Miles, 2004, | Adamcik and Mezzenga, 2012, (G. Creasey et al., [2012].

AFM operates using, for example, an optical detection system, which is the most common.
This is due to the fact that it has a simple and robust principle of laser detection with a
photodiode. It points the laser at the end of the cantilever, where the probe tip is attached and
on which the photodiode is located. The laser reflects off it, depending on the movement of the
cantilever, which is monitored by appropriate detectors. Thus, based on changes in the voltages
on the photodiode, the direction of the cantilever can be determined |Santos and Castanhol,
2004, Morris et al., 2009].

This technique can be operated in two imaging modes: contact mode (static) and tapping
mode (dynamic). In the contact mode, the probe is brought into contact with the surface and
then “dragged” laterally across the surface. The force between the cantilever and the surface is
maintained by keeping the deflection of the cantilever constant. This causes three values to be
obtained when scanning the sample, height, deflection, and friction |Ascoli et al., [1994] Santos
and Castanho|, 2004]. In the tapping mode, the cantilever oscillates near its resonant frequency,
which is monitored for changes caused by interaction with the surface. Intermittent contact
between the probe and the surface reduces the chance of damage to the probe or surface. This
mode allows the detection of the values of height, amplitude error, and phase. In addition, this
mode is commonly used for preliminary studies of biological surfaces due to its mild and robust
operational characteristics, as it does not lead to damage or shape change of the material under

study [Ascoli et al., [1994] |Silval 2005, Garcia and Pérez|, 2002, Morris et al., 2009].
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AFM can also be used to determine Young’s modulus. This is a factor that determines the
elasticity of the material under test in tension and compression. Each material has its own
characteristic value between the linear deformation and the stress that occurs in it. Amyloid
fibrils are one of the stiffest biological materials known today, with Young’s modulus of 3-20
GPa. In addition, amyloid fibrils show high resistance to fracture. Their ultimate strength has
been shown to be on the order of 0.6 GPa, which is comparable to steel |J. Roa et al., 2011}, Liu
et al., 2020, Lamour et al., 2017, |Smith et al., 2006, Scheibel et al., 2003].

1.6.3 Hydrogen Deuterium Exchange Mass Spectrometry (HDX-MS)

Hydrogen exchange mass spectrometry is one of the most robust analytical methods for
studying protein conformations and dynamics. It monitors a hydrogen isotope exchange in
the amides of the protein backbone, making this approach highly sensitive for studying protein
conformation and dynamics along the entire protein backbone, except proline [Jensen and Rand),
2016]. This method was first used to study the protein structure by |Zhang and Smith [1993] in
1993. It is based on an isotopic exchange of the protein under study in the excess of deuterium,
followed by its fragmentation by pepsin under quenching conditions |[Rosa and Richards, |1979,
Englander et al| [1985|. Then, it measures changes in the content of deuterium, which is located
in labile side chain groups or in the N-terminal amine group and exchanges much faster than
hydrogen ions contained in the main amide chain |Jensen and Rand| 2016.

The advantage of the HDX-MS method is that it does not require covalent labeling of the
protein under study, large amounts of sample, and tolerates its heterogeneity and complexity
[Martens et al., 2018, Jia et al.,2020]. The disadvantage, on the other hand, is the lack of strict
information about distance changes associated with conformational transitions. One can only
learn about the H-bond stability of the amide backbone, determined mainly by the parameter
of local structural dynamics and solvent availability [Martens et al.| |2018] [Vadas and Burke),
2015|.

Two types of HDX can be distinguished, continuous and pulsed. The continuous HDX is the
most widely used. In it, the protein under study is diluted in D,O buffer at different times, and
then deuterium uptake is measured. The increased deuterium uptake as a function of exchange

time provides information about the protein’s conformation |Engen| [2009, [Konermann et al.,
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2011]. The pulsed HDX, on the other hand, examines short time windows between incubation
of the protein under study for different lengths of time. Changes in the deuterium uptake help
to determine which populations of molecules are in solution [Pan et al.,[2005| |Zhang et al., 2013,

Wang et al., [2015].

1.7 Prediction of amyloids

All predictors of the protein 3D structure are based on Anfinsen’s thermodynamic hypothesis
|[Anfinsen, [1973|. It states that all information about the protein folding is encoded by its amino
acid sequence and the protein’s native state is characterized by the lowest free energy. This
postulate formed the basis for the development of various computer simulations, which try
to predict protein conformations using an energy-driven scoring method identifying the lowest
energy state |[Anfinsen| (1973| Anfinsen and Scheraga, |1975| Levitt and Warshel, |1975]. However,
this assumption can be violated by many proteins that undergo aggregation and misfolding. One
of them are amyloid proteins.

Over the years, a good deal of various software for amyloid prediction have been developed.
Different methods or combinations have also been used to obtain good results. Currently, we
can distinguish, among others, methods based on the physicochemical properties of amino acids,
their order in the protein secondary structure and thermodynamic interactions between them

or methods based on machine learning.

1.7.1 Structure-based methods

Structure-based approaches to predict protein amyloidogenicity are based on the protein
structure as input data, taking into consideration their folding and native state. This involves
the use of solvent accessibility of protein residues to estimate surface hydrophobicity. Moreover,
short simulations of molecular dynamics are performed to calculate protein retention (proteins
that are retained in the endoplasmic reticulum after folding) over time. However, this method
might not be applied to highly dynamic proteins.

An example of this approach is Aggrescan3D 2.0 [Pujols et al., 2018, Kuriata et al., 2019,
which in addition to the features listed above, also simulates changes in the protein solubility and

stability upon mutation and conformational fluctuations in the amyloid aggregation. Thanks
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to the extended dynamics calculations, it allows for studying larger proteins and screening for
functional protein variants with improved solubility. In addition, Aggrescan3D Database is
available. It contains the analyzed human proteome in terms of their aggregation properties
[Badaczewska-Dawid et al., 2021].

Other programs, AggScore |[Sankar et al., 2018| use the distribution of hydrophobic and
electrostatic patches on the protein surface, including the intensity and relative orientation of
surface patches. PASTA 2.0 is based on the data derived from the protein secondary structure
to make a residue-residue contact map |[Walsh et al) 2014]. On top of that, it also uses the
residue-residue energy potential and scoring functions for [-sheet structure formation. It is
worth noting that Aggrescan3D 2.0 and AggScore can be used to predict amyloid aggregation
and globular proteins, whereas PASTA 2.0 is specific for amyloids.

1.7.2 Machine learning methods

Machine learning (ML) is a part of artificial intelligence (AI) and computer science. It
focuses on the use of data and algorithms to imitate the way in which humans learn, gradually
improving its accuracy. Nowadays, ML is an important part of the growing field of data science
and biology.

Predictions are based on the use of one of three main classification methods:

e supervised machine learning, in which labeled datasets are used to classify data or predict

outcomes;
e unsupervised machine learning, which is used to analyze and cluster unlabeled datasets;

e semi-supervised learning, which shows properties between the supervised and unsupervised
ML. It uses a smaller labeled data set to guide classification and feature extraction from

a larger unlabeled data set.

Almost all existing tools for the prediction of amyloid-like proteins utilize supervised learn-
ing. However, to train a non-deep supervised model, they need to transform information hidden
in an amino acid sequence to a tabular or matrix format of various features because the protein

sequences are not structured data. Omne of the possibilities is to encode the sequence using
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the physiochemical and biochemical properties of amino acids. This approach is used in, e.g.,
AGGRESCAN [Conchillo-Solé et al., 2007] and APPNN [Familia et al., 2015|, which also in-
cludes the frequency of f-sheet structures. WALTZ |Lopez de la Paz and Serrano, 2004] and
Zyggregator |Tartaglia and Vendruscolo, [2008| are based on identifying sequence patterns of
peptides, which form amyloid-like fibrils in vitro. Software like TANGO [Belli et al., 2011] and
BetaSerpentine [Bondarev et al [2018| estimate the probability of amino acid sequence segment
to form [-sheet structures, which mediate the protein aggregation. Another method is based
on identifying amyloidogenic sequence patterns called n-grams. They are continuous or discon-
tinuous sequences of n elements used in, e.g., Budapest Amyloid Predictor |Keresztes et al.)
2021] and software developed by our team AmyloGram 1.0 |Burdukiewicz et al., 2017]. The
only tool that utilizes unsupervised ML is Cordax |Louros et al., 2020b|. It clusters sequences
using t-Distributed Stochastic Neighbor Embedding (t-SNE).

Table 2: List of example software for prediction of amyloid properties of proteins
and peptides.

Software Size of train- Sequence encoding Model

ing dataset
AGGRESCAN 57 polypeptide sequence amino acid properties
APPNN 296 orthogonal encodings artificial neural networks
WALTZ 213 polypeptide sequence computational
Zyggregator no data polypeptide sequence amino acid properties
Budapest Amy- 948 and 553 n-grams SVM
loid Predictor
AmyloGram 1.0 1088 (6) and n-gram random forest

1887 (6-10) and

2373 (6-15)
TANGO no data polypeptide sequence computational
BetaSerpentine  no data polypeptide sequence structural
Cordax 1402 hexapeptides t-SNE clusters

1.7.3 AmyloGram 1.0

AmyloGram 1.0 [Burdukiewicz et al.| 2017 is an amyloidogenicity prediction software, which

uses n-grams, i.e., continuous or discontinuous sequences of n elements. They are widely used in
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the analysis of biological sequences, thanks to their highly interpretable nature. These features
help to identify motifs responsible for amyloidogenic properties of peptides, because the shortest
motif can have a length of only six residues |de Groot et al., 2005].

The data set used to train AmyloGram was extracted from AmyLoad [Wozniak and Kotulskal,
2015]. It contained 421 amyloid peptides and 1044 non-amyloid peptides. Peptides with a
sequence length shorter than six and longer than 25 amino acids were removed. The former
were too short and the latter too rare and diverse. The final dataset contained 397 amyloid and
1033 non-amyloid peptides.

Overlapping hexapeptides were extracted from the dataset and labeled as amyloid or non-
amyloid based on the annotation in the database. Since hexamers from longer peptides may
not always have amyloidogenic properties as the peptide from which they were extracted, false
positive or false negative amyloid motifs could be used to train AmyloGram. To diminish this
problem, the maximum length of peptides in the training set was restricted to 15 amino acids.
Finally, the training set consisted of 3 groups that differed in length (6, 6-10 and 6-15 amino
acid residues).

The algorithm also utilizes a reduced amino acid alphabet, which represents certain sub-
groups of amino acids retaining information about protein properties. As several studies show,
peptide structures do not depend only on amino acid sequence, but also on their general phys-
iochemical properties [Murphy et al., 2000]. Multiple reduced alphabets based on various com-
binations of physiochemical properties of amino acids were created. After cross-validation of
reduced alphabets, 18,535 unique amino acid encodings, which used 17 peptide physiochemical
properties, were extracted. The best-reduced alphabet consisted of six amino acid groups (Tab.
. The selected hexapeptides were encoded using the reduced alphabet. As classification for the
cross-validation, the random forest method was used, and only discriminating n-grams selected

by Quick Permutation Test were considered |[Burdukiewicz et al. 2017].
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Table 3: Best performing amino acid encoding used in amyloidogenicity prediction
of peptides by AmyloGram 1.0.

Subgroup ID  Amino acids

1 1 G

2 1I K, P, R

3 III LV

4 IV F,W,Y

5 V A, C, H M

6 VI D,E,N,Q,S, T

1.7.4 AlphaFold

Another ML predictor, which has recently become extremely popular, is AlphaFold devel-
oped by Google DeepMind |Callawayl, |2020]. For two consecutive iterations of CASP |Callaway,
2020], a worldwide benchmark focused on the prediction of protein structure, AlphaFold has
consecutively outperformed other methods. Structures modeled by AlphaFold had more accu-
rate domains and side chains. Moreover, it can provide estimates of predictions |[Jumper et al.|
2021}, Senior et al., [2020].

To achieve such outcomes, AlphaFold utilizes several methods. It includes novel neural
network architectures, evolutionary-based training procedures, as well as physical and geometric
constraints of protein structures. The use of these techniques allows the development of a
new way to jointly embed multiple sequence alignments, a new output representation enabling
accurate end-to-end structure prediction, iterative improvement of predictions by the use of
intermediate losses, and learning from unlabeled protein sequences. This predictor is able to
predict 3D coordinates of all heavy atoms of a protein from primary amino acid sequence and

aligned sequences of homologs [Jumper et al., 2021}, Senior et al., [2020].

1.8 Difficulties in modeling of amyloids

While AlphaFold is a breakthrough model for the 3D structure prediction of globular pro-
teins, it is not effective for a significant fraction of disease-associated amyloids or other aggre-

gating proteins. They contradict Anfinsen’s postulate, on which AlphaFold is based. In their



1.8 Difficulties in modeling of amyloids 34

case, the assumption that the primary amino acid sequence determines the 3D structure can
be invalid. The main reason for it is that these proteins contain the chameleon sequences or
intrinsically disordered regions (IDRs) |Pinheiro et al. 2021]. The former are able to adopt
different secondary structures despite having the same sequence. This is related to the transi-
tion between the a-helix and [-sheet structures. This mechanism is found in the prion protein
(PrP) |Bahramali et al.| [2016] |Gendoo and Harrison, [2011} |Guo et al.; 2007]. The latter, on the
other hand, lack a specific 3D structure while retaining their functions. IDRs exist as dynamic
conformation assemblies. They have the ability to swiftly change from one conformation to
another, from extended one to compact one. This property allows them to bind to many other
proteins and ligands, performing diverse functions |Das and Pappu, 2013, Van Roey et al., 2014}
Tompal, 2012, Garcia-Jacas et al., [2022].

Liquid-liquid phase separation is one more thing that affects the correct prediction of amy-
loids. The process involves the formation of membrane-less compartments in the cell that have
important physiological but also pathological functions [Banani et al., 2017 Lyon et al., 2021].
In this case, proteins undergo an aggregation process to become amyloids through a condensa-
tion pathway instead of a deposition one. Research is currently being conducted on whether the
amino acid sequence affects the condensation pathway and how to predict the amyloid aggre-
gation within condensates [Vernon and Forman-Kay, 2019, [Vendruscolo and Fuxreiter, 2022].

One of the methods to overcome the difficulties in amyloid prediction was introduced by
Kolinski et al.| [2021]. They have tested a multiscale procedure using the CABS-dock algorithm
to model a highly amyloidogenic peptide arising from insulin A-chain |[Kurcinski et al., 2019].
The first step of this procedure is to make multiple docking simulations using the CABS-dock
algorithm. Then the models were recreated to atom representations, improved by molecular dy-
namics simulations, and the best models were assembled into fibrils. The obtained fibril models
have been compared with experimental data from atomic force microscopy (AFM) proving that
the multiscale modeling procedure is highly accurate in the prediction of amyloid protofilaments

and fibrils [Kolinski et al., [2021].



2. The aims of the dissertation 35

2 The aims of the dissertation

Since many aspects of amyloids are still unknown, the goal of this thesis was to conduct var-

ious bioinformatic and experimental analyses of amyloid proteins including functional amyloids

CsgA and CsgB:

e cxperimental testing amyloidogenicity of peptides that were accurately predicted and in-
correctly recognized by the software AmyloGram. The aim of this approach was to validate
the predictor and receive a verified set of peptides for improving this algorithm in the fu-
ture. Moreover, learning these experimental methods based on different amyloid peptides

was necessary for further research on much longer functional amyloids, CsgA and CsgB.

e detailed bioinformatic research of CsgA and CsgB sequences showing a unique arrange-
ment of five repeating regions. The purpose of this study was to assess how similar the

duplicated units are to one another and to identify a common consensus for them.

e extensive phylogenetic analyses of CsgA and CsgB homologs. The goal of these investiga-
tions was to reconstruct the evolutionary history of these proteins and verify if the similar

structural organization evolved convergently or was inherited from a common ancestor.

e studying the role of repeating regions of CsgA and CsgB in the aggregation process. The
target of this investigation was to purify selected CsgA and CsgB variants with deleted

regions and determine the influence of these regions on the rate of aggregation.

e comparison of functional and non-functional amyloids. The objective of these analyses
was to find specific sequence features that can distinguish these types of amyloids and can

be used in their prediction based on a machine learning model.

e building a database of amyloid interactions. The intention of this subject was to gather
information about the interaction of various amyloid proteins including functional ones,

e.g. CsgA and CsgB, as well as designed definitions and descriptors of these interactions.

The thesis was divided into several parts relevant to these subjects including in each of them
the section of Research objectives, Material and Methods as well as Results. The subjects were

jointly discussed in the section Discussion at the end.
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3 Amyloid peptide validation

3.1 Research objectives

The aim of this research objective was to evaluate experimentally the performance of Amylo-
Gram, a software for amyloidogenicity prediction. To achieve that, we have selected 10 amyloids
correctly predicted by this algorithm and 24 peptides that were incorrectly predicted accord-
ing to initial assumptions. Then, the peptides were experimentally verified using Thioflavin T
assay and Atomic Force Microscopy. The goal of this research was also to learn these experi-
mental techniques and develop appropriate protocols on the base of various amyloid peptides.
It was necessary for further studies of much longer functional amyloid CsgA and CsgB proteins

described in the next sections.

3.2 Materials and Methods
3.2.1 Peptide selection

In order to validate AmyloGram 1.0 prediction algorithm, we have chosen 3 sets of data
(Fig. . The first set consisted of 10 peptides, which were predicted in accordance with the
annotations in the AmyLoad database. The other two sets included 12 false positive and 12
false negative peptides. To select these peptides, we downloaded all hexapeptide sequences from
AmyLoad. After splitting them into two separate sets, amyloidogenic and non-amyloidogenic,
we cross-checked our sets to eliminate sequences that occurred in both groups. The peptide
sequences were encoded using the reduced alphabet with 6 amino acid groups (Tab. . The
encoding resulted in the occurrence of identical sequences, which were removed from the final set.
Hexapeptides that were also present in AmylHex database [Fernandez-Escamilla et al., |2004]
were removed because AmylHex includes experimentally validated peptides that were used to
check if AmyloGram is working correctly after the learning phase. The amyloidogenicity of the
selected peptides were predicted by AmyloGram, which provided probability values. Based on
these values and AmyLoad annotations, we selected correctly (Tab. and incorrectly (Tab.
, that were predicted opposite to the annotations in the AmyLoad database.
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10 true-positive peptides

Figure 4: The scheme of peptide selection for AmyloGram improvement.
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Table 4: Reference peptides that were correctly predicted by AmyloGram algo-
rithm according to annotations in AmyLoad database.

Peptide AmyLoad AmyloGram Probability
1 SFLIFL amyloid amyloid 0.9157
2 ISFLIF amyloid amyloid 0.9132
3 YLLYYT amyloid amyloid 0.9124
4 LVFYQQ amyloid amyloid 0.8876
5 YTVIIE amyloid amyloid 0.9176
6 KPAESD non-amyloid non-amyloid 0.0005
7 FNPQGG non-amyloid non-amyloid 0.0023
8 NPQGGY non-amyloid non-amyloid 0.0023
9 TKPAES non-amyloid mnon-amyloid 0.0024
10 SWVIIE non-amyloid non-amyloid 0.6161

The selected peptides for experimental verification were synthesized de novo by an external

company. To be certain that they do not aggregate during this process, we dissolved them using

NaOH because an increase in alkalinity disturbs the tertiary structure of proteins. After few

seconds, we neutralized pH and measured fluorescence intensity using Th'T assay.
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Table 5: Peptides that were incorrectly predicted by AmyloGram algorithm ac-
cording to annotations in AmyLoad database.

No. Peptide AmyLoad AmyloGram Probability
1 NNSGPN  amyloid non-amyloid 0.0138
2 QANKHI  amyloid non-amyloid 0.0434
3 QEMRHF  amyloid non-amyloid 0.0519
4 MMHFGN  amyloid non-amyloid 0.0528
5 ALEEYT  amyloid non-amyloid 0.0687
6 HGFNQQ amyloid non-amyloid 0.0790
7 ASSSNY amyloid non-amyloid 0.0880
8 HSSNNF amyloid non-amyloid 0.0880
9 MIENIQ amyloid non-amyloid 0.0984
10 NIFNIT amyloid non-amyloid 0.1244
11 MIHFGN  amyloid non-amyloid 0.1375
12 HLFNLT amyloid non-amyloid 0.1441
13 STVVIE non-amyloid amyloid 0.8627
14 ELNIYQ non-amyloid amyloid 0.8216
15 FTFIQF non-amyloid amyloid 0.8093
16 WSFYLL  non-amyloid amyloid 0.7741
17 YYTEFT  non-amyloid amyloid 0.7184
18 NTIFVQ non-amyloid amyloid 0.7013
19 DETVIV non-amyloid amyloid 0.6726
20 FTPTEK  non-amyloid amyloid 0.6655
21 FQKQQK non-amyloid amyloid 0.6655
22 FGELFE non-amyloid amyloid 0.6547
23 SHVIIE non-amyloid amyloid 0.6449
24 STTIIE non-amyloid amyloid 0.6366

3.2.2 Thioflavin T (ThT) assay

ThT stock (Sigma, product no. T3516) was dissolved in MilliQ water and filtered through
0.22 pm filter to make the stock of 10 uM solutions. The 250 pl of prepared ThT solution
was added to 50 ml of 50 mM phosphate buffer with pH = 7. The final concentration of
the ThT buffer was approximately 50 mM. For the measurement of ThT fluorescence in the

presence of amyloid fibrils, 90 pl of ThT buffer was mixed with 10 pl of the protein solution.
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The protein samples were measured just after the preparation and each day for 14 days in
the case of reference peptides and 4 days in the case of doubtful peptides. Depending on the
primary results, we measured them many times. The ThT fluorescence emission spectrum was
measured at room temperature at 480 nm using the 440 nm excitation wavelength on Cary
Eclipse Fluorescence Spectrophotometer (Agilent Technologies). Each sample was measured at
least 3 times. Intensity curves were normalized using the protein median value and the standard
deviation for the peak at 480 nm. For the ThT control, we used 90 pl of ThT buffer mixed with
10 pl MilliQ water. We assumed that the peptide is amyloidogenic if its fluorescence intensity
is twice that of the ThT control.

3.2.3 Atomic Force Microscopy (AFM)

For AFM experiments, the peptide electric charge was checked using ProtParam [Walker
2005]. Mica, the surface on which the samples are investigated, is charged negatively. In order
to increase the adhesion to the mica, some acid has been added to the negatively charged
peptides. It should change its electric charge to positive and improve the interaction with the
surface. Peptide solution with the concentration of 20 pl was pipetted onto the freshly etched
mica surface and incubated for 10 min, rinsed with 1 ml of MilliQQ water, and dried under
gentle airflow. AFM images were recorded in the Tapping-in-Air mode at the drive frequency
of approximately 300 kHz using a Dimension Icon (Bruker) scanning probe microscope system.
Aluminum reflective coated tips Tap300Al-G (BudgetSensors) were used as a probe |Sneideris
et al| [2015]. Although AFM is the most time-consuming procedure, it is the most reliable in

concluding whether a peptide forms amyloid fibrils or not.

3.3 Results

Part of the results obtained under this dissertation were published in [Szulc et al. [2021].

3.3.1 ThT assay

First, ThT assay was performed on 10 reference peptides to validate the proper functioning

of AmyloGram 1.0. Five of them were amyloidogenic and five non-amyloidogenic according to
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their annotations in the AmyLoad database [Wozniak and Kotulska), 2015|. The fluorescence
spectra intensity of 10 peptides in the respective days of incubation are presented in Fig.

21 C 60 C
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= KPAESD
o 250-
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Figure 5: Aggregation kinetics of reference amyloid and non-amyloid peptides in the pres-
ence of ThT dye in time. Day 0 represents the measurement right after the sample preparation.
Samples were incubated in 21°C and 60°C. Plots were divided according to peptide amyloidogenicity

annotations given by AmyLoad and temperature.
Values for amyloids were mostly higher than for the ThT control, whereas those for non-
amyloids were very close or below the control values. Generally, the fluorescence intensity
decreased with time. The temperature has no important influence on fluorescence. The highest
intensity indicating effective binding to ThT was shown by peptide LVFYQQ. Interestingly,
among the non-amyloid peptides, SWVIIE revealed a very high binding property to ThT. It
can be considered a false positive amyloid because it does not form fibrils but only oligomers

when studied under AFM. The oligomerization leads to higher binding of ThT dye.
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The results for 24 incorrectly predicted peptides are presented in Fig. [6] Peptide samples
were measured right after preparation and for 4 consecutive days. Several peptides showed the

highest fluorescence values just after preparation and next the values decreased.

amyloid non_amyloid
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Figure 6: Aggregation kinetics of incorrectly predicted peptides in the presence of ThT
dye in time. Plots were divided according to peptide amyloidogenicity annotations given by Amy-

Load.

We have found 4 peptides annotated in the AmyLoad database as non-amyloids and pre-
dicted by AmyloGram as amyloids, which showed very high fluorescence values. Three amyloids
from the AmyLoad database and predicted by AmyloGram as non-amyloids revealed also very

high values (Fig. [7)).
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Figure 7: Fluorescence intensity of 24 peptides incorrectly predicted by AmyloGram.

Plots were divided according to peptide amyloidogenicity annotations given by the AmyLoad database

and the result of the ThT assay. The red line indicates ThT control fluorescence intensity. The light

red area indicates values that exclude ThT binding to the peptide. AmyloGram prediction is opposite

to that of AmyLoad.

Due to very high-intensity values for some peptides in the presented plots (Fig. @, the

values for other peptides are not easy to compare with the control. Therefore, we demonstrated

fluorescence intensities for each peptide separately and summarized the results in Fig. [7] The

study indicates that six peptides predicted as amyloids by AmyloGram did not bind ThT in

agreement with the annotation in AmyLoad as non-amyloid. On the other hand, ten peptides

predicted as non-amyloids by AmyloGram did not show the amyloiodgenicity in the ThT assay

in contrast to the AmyLoad annotation. Five peptides bounded ThT were also computationally

predicted as amyloids, whereas three other peptides also interacting with ThT were not predicted

as amyloids by AmyloGram in opposition to AmyLoad annotations.
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3.3.2 AFM

The results of Atomic Force Microscopy for reference peptides are presented in Fig. [8}{I4]
All typical amyloid peptides should form long, thin amyloid fibrils such as that in Fig. |8 and
Ol Non-amyloid peptides should not form any aggregates, as shown for example in Fig. [10]
The exception is peptide SWVIIE, which formed oligomeric aggregates (Fig. binding also
to ThT.
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Figure 8: ISFLIF peptide under AFM. AmyLoad: amyloid, AmyloGram: amyloid.
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Figure 9: LVFYQQ peptide under AFM. AmylLoad: amyloid, AmyloGram: amyloid.
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Figure 10: NPQGGY peptide under AFM. AmyLoad: non-amyloid, AmyloGram: non-amyloid.
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Figure 11: SWVIEE peptide under AFM. AmyLoad: non-amyloid, AmyloGram: non-amyloid.
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Figure 12: SFLIFL peptide under AFM. AmyLoad: amyloid, AmyloGram: amyloid.
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Figure 13: YLLYYT peptide under AFM. AmyLoad:

amyloid, AmyloGram: amyloid.
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Figure 14: YTVIIE peptide under AFM. AmyLoad: amyloid, AmyloGram: amyloid.

3.3.3 Validation of results

The final results from the experimental validation of AmyloGram are collected in Tab. [6]and
[ In the case of reference peptides, we can conclude that AmyloGram made correct predictions

(Tab. [6). All predictions were confirmed in most experiments.
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Table 6: Validation of amyloid propensities of reference dataset by various meth-

ods.

Sequence AmyLoad ThT AFM AmyloGram
SFLIFL amyloid amyloid non-amyloid amyloid
ISFLIF amyloid amyloid amyloid amyloid
YLLYYT  amyloid amyloid non-amyloid amyloid
LVFYQQ amyloid amyloid amyloid amyloid
YTVIIE amyloid amyloid non-amyloid amyloid
KPAESD  non-amyloid non-amyloid - non-amyloid
FNPQGG non-amyloid non-amyloid - non-amyloid

NPQGGY mnon-amyloid non-amyloid non-amyloid non-amyloid
TKPAES  non-amyloid non-amyloid non-amyloid non-amyloid

SWVIIE non-amyloid amyloid non-amyloid non-amyloid

At least one experimental method confirmed the computational results. SWVIIE peptide
predicted as non-amyloid and showing a high-intensity peak in ThT assay did not form fibrils
under AFM. Unfortunately, in the case of SFLIFL, YLLYYT, YTVIIE peptides (Fig. , and
14), we did not find fibrils on mica using AFM. It indicates that this method does not always
provide clear findings in the case of amyloids. In the case of amyloids, which were predicted by
AmyloGram contrary to the annotations in the AmyLoad database, ThT assay confirmed the
predictions in 16 out of 24. The results of the peptide verification can be used to modify the
learning stage and initial peptide classification of the updated version of AmyloGram and the

software for the prediction of functional amyloids to which belong CsgA and CsgB.
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Table 7: Validation of amyloid propensities of incorrectly predicted peptides by

various methods.

Sequence

AmyLoad

ThT

AmyloGram

NNSGPN
QANKHI
QEMRHF
MMHFGN
ALEEYT
HGFNQQ
ASSSNY
HSSNNF
MIENIQ
NIFNIT
MIHFGN
HLFNLT
STVVIE
ELNIYQ
FTFIQF
WSFYLL
YYTEFT
NTIFVQ
DETVIV
FTPTEK
FQKQQK
FGELFE
SHVIIE
STTIIE

amyloid
amyloid
amyloid
amyloid
amyloid
amyloid
amyloid
amyloid
amyloid
amyloid
amyloid
amyloid
non-amyloid
non-amyloid
non-amyloid
non-amyloid
non-amyloid
non-amyloid
non-amyloid
non-amyloid
non-amyloid
non-amyloid
non-amyloid

non-amyloid

non-amyloid
non-amyloid
non-amyloid
non-amyloid
non-amyloid
non-amyloid
non-amyloid
non-amyloid
non-amyloid
amyloid
non-amyloid
amyloid
amyloid
non-amyloid
amyloid
amyloid
non-amyloid
amyloid
non-amyloid
non-amyloid
non-amyloid
non-amyloid
amyloid

amyloid

non-amyloid
non-amyloid
non-amyloid
non-amyloid
non-amyloid
non-amyloid
non-amyloid
non-amyloid
non-amyloid
non-amyloid
non-amyloid
non-amyloid
amyloid
amyloid
amyloid
amyloid
amyloid
amyloid
amyloid
amyloid
amyloid
amyloid
amyloid

amyloid
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4 Computational analyses of CsgA and CsgB sequences

4.1 Research objective

Sequences of CsgA and CsgB show an interesting organization, characterized by the presence
of peculiar five repeating units. Therefore, we decided to investigate in detail the sequence
features and organization of CsgA and CsgB proteins. We planned to evaluate the similarity
between the duplicated regions and find common consensus sequences for them. To achieve that,

we conducted a relevant bioinformatic analysis based on motif finding and aligning sequences

(Fig. [19).

graphical
alignment
in Dotlet

secondary
secondary structure
structure prediction
in JPred

flr:doli;.llfg Se(q Ue_nce
in MEME motifs

sequence
alignment
in glsearch

aligned
sequences

Figure 15: Flowchart of computational analyses of CsgA and CsgB sequences.

4.2 Materials and Methods
4.2.1 Motif finding

Motifs in CsgA and CsgB sequences were searched using MEME (Multiple Expectation
maximizations for Motif Elicitation) Suite 5.5.1 |Bailey et al., 2015] using default settings. This
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algorithm is dedicated for ungapped motif search and is based on several methods, which in-
clude the expectation-maximization (EM) algorithm, EM-based heuristics, maximum likelihood
ratio-based heuristics as well as multi-start and greedy search |Bailey and Elkan, [1994]. It ap-
plies statistical modeling to automatically choose the best width, number of occurrences, and
characteristics for each motif. Using the EM, MEME searches for motifs in provided sequences

iteratively modifying the search parameters and found tentative motifs.

4.2.2 Aligning sequences

Graphical pairwise alignments of dotplot type for CsgA and CsgB sequences were performed
with Dotlet at the website https://dotlet.vital-it.ch/ assuming the window size of 13 and the
scoring matrix Blosum 62. The dot plot is a graphical method for comparing two sequences
and identifying regions of close similarity. One sequence is presented on the x-axis and another
on the y-axis of the plot. When the residues of the compared sequences match at the same
position on the plot, a dot is drawn at the corresponding location. If there are many adjacent
dots, they arrange into lines in the plot. In the study, we aligned CsgA or CsgB sequence with
itself to demonstrate a potential similarity between the duplicated regions.

Alignments between new potentially duplicated regions and those already determined were
conducted using the optimal global:local affine Needleman-Wunsch algorithm (glsearch) from
FASTA package version 36.3.8g [Pearson et al., [1997]. This algorithm is more sensitive and
provides the statistical significance of alignments. We assumed the number of shuffle 1,000,000
and tested all scoring matrices. Finally, we selected the alignments that showed an E-value

smaller than 0.05 and the lowest for the set of matrices.

4.2.3 Secondary structure prediction

The secondary structure was predicted using JPred [Drozdetskiy et al. [2015] via JalView
[Waterhouse et al., 2009]. This software uses the Jnet algorithm based on a neural network
to make more accurate predictions. In addition to the protein secondary structure JPred also
makes predictions on Solvent Accessibility and Coiled-coil regions using Lupas method. For
the sequence for which the prediction is made, homologs are searched in UniProt database

|[UniProt Consortium), 2018| and next a sequence profile is constructed for the prediction.
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4.3 Results
4.3.1 Analysis of CsgA and CsgB sequence organization

Both CsgA and CsgB sequences contain five non-identical repeating units participating in
amyloid fiber formation [Barnhart and Chapman, 2006, Dueholm et al., [2012} [Evans and Chap-
man, 2014, Chapman et al., 2002]. They were recognized by general sequence similarity and
the identification of only identical residues. The motifs were not statistically evaluated, either.
This approach could be subjective, so we decided to apply a more objective motif search using
a MEME algorithm [Bailey et al., 2015| dedicated to this purpose.

The analysis revealed the presence of a common motif with E-value 2.7e-047, which is re-
peated five times in CsgA sequence (Fig. [16)). The individual motifs are separated by one or
two amino acid residues and are also significant with p-value < 3.17e-17. The consensus motif
is 21 residues in length and is characterized by at least nine conserved sites. In the middle,
there are three glycine residues, whereas on both sites there are polar asparagine, glutamine,
and serine. In the right part of the consensus, there is also a conserved alanine. The 5th, 7th,
and 18th positions in the motif are also conserved and occupied by only hydrophobic amino
acids.

In the case of the CsgB sequence, the MEME algorithm also discovered a motif with E-value
4.2e-027 repeating five times but with a length of 22 residues (Fig. . The individual motifs
are adjacent and separated by no residue. They are significant with p-value < 2.19e-13. The
consensus motif includes at least seven conserved sites. In the middle, there is also a dominant
glycine but in contrast to CsgA only one. To the left of it is conserved polar glutamine and
to the right polar serine, asparagine and glutamine. Only hydrophobic residues are present in
the 8th, 17th and 19th positions in the motif. It can add that two regions (2 and 5) start
with glycine and two others (1 and 3) end with this amino acid, which is visualized also in the
consensus motif.

The sequence consensus of CsgA and CsgB motifs share common features. Both have the
central glycine surrounded by polar and hydrophobic residues, occurring alternatively. They also
contain two glutamine residues in similar positions, as well as conserved asparagine and alanine

separated by only one less conserved site. It may indicate a common structural organization
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and common evolutionary history of these regions. The same analysis aimed to find common

motifs between CsgA and CsgB sequences but did not produce statistically significant results.

Start p-value A motif site with the 10 flanking letters on either side
41 9.11e-20 NHGGGGNNSG NSELNIYQ NSALALQT DARNSDLTIT
64 3.17e-17 NSALALQTDA RNSDLTITQ NCADVGQG SDDSSIDLTQ
86 7.92e-19 GNGADVGQGS DDSSIDLTQRGFGNSATLDQW NGKNSEMTVK

109 1.92e-19 NSATLDQWNG KNSEMTVKQF NGAAVDQT ASNSSVNVTQ
131 2.22e-17 GNGAAVDQTA SNSSVNVTQVGCFGCNNATA Q
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Figure 16: Motifs discovered by MEME algorithm in CsgA sequence. The location of

individual motifs and the logo sequence of the consensus motif were presented.

Start p-value A motif site with the 10 flanking letters on either side
42 2.19¢-13 NFAVNELSKS SFNQAATIICQAGTNNSAQLRQGC GSKLLAVVAQ
64 1.79e-17 TNNSAQLRQG GCSKLLAVVAQECSSNRAKIDQT GDYNLAYIDQ
86 9.20e-17 SSNRAKIDQT CDYNLAYIDQAGSANDASISQ:- AYGNTAMIIQ

108 1.23e-16 SANDASISQG AYCNTAMIIQKGSGCNKANITQY GTQKTAIVVQ
130 4.42e-15 SGNKANITQY CTQKTAIVVQRQSQOMATIRVTQR
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Figure 17: Motifs discovered by MEME algorithm in CsgB sequence. The location of
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individual motifs and the logo sequence of the consensus motif were presented.
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4.3.2 Searching for a new duplicated region in CsgA and CsgB sequences

To visualize the similarity between the five repeating regions, we aligned separately the same
sequence of CsgA or CsgB with itself (Fig. [18). In this case, we should expect a symmetric plot
with four series of short lines above and under the diagonal. These lines should correspond to
matches between the appropriate duplicated regions arranged in columns and rows of the plot.
The number of these lines should decrease from the diagonal to the vertices of the square plot.
In fact, such a pattern can be recognized for the CsgA sequence and also for CsgB, but not all
matching lines are clearly visible due to poor sequence similarity between some regions (Fig.
. Interestingly, after the detailed investigation of the CsgA alignment, we identified some
additional lines that suggest a similarity between a fragment located before the determined
regions and the known duplicates. These lines are indicated by arrows in Fig. and suggest
the presence of an additional duplicated region. In fact, a potential new region includes stretches
of glycines and polar residues present in the determined motifs. Thus, we performed a more

sensitive analysis to verify the similarity between the regions.

Expectation CsgA CsgB

oy ¥

NN\
NN
NN
NN\

Figure 18: Dotplot (graphical pairwise alignment) of CsgA and CsgB sequences, as well
as the expected result for five duplicated regions. Red arrows indicate a similarity between a

sequence located before the determined regions and some already approved regions.

In agreement with the dot plot results, we found a statistically significant similarity between
the sequence named N1 located between 17 and 31 residues (SALAGVVPQYGGGGN) and
the five known repeating regions. Searches of N2 sequence with the location 32-40 (HGGGG

NNSG) occurred also statistically significant. E-value for the produced alignments was from



4.3 Results 59

0.038 to 0.00001 and identity between 30.8% to 83.3% (Tab. [g).

Table 8: Results of glsearch between CsgA N1 (17-31) and N2 (32-40) as well as
CsgB N (15-41) sequences against the five repeating regions (R1-R5). Statistical
significance (E-value) and percent (%) of identity, the used scoring matrices were included.

Protein Query Subject % identity E-value Matrix

CsgA N1 R1 53.9 0.00003  MD20
CsgA N1 R2 58.3 0.0005 MD20
CsgA N1 R3 30.8 0.034 OPT5
CsgA N1 R4 46.2 0.00001 VT80
CsgA N1 R5 40.0 0.0068 BL50
CsgA N2 R1 71.4 0.000041 MD10
CsgA N2 R2 83.3 0.015 VT10
CsgA N2 R3 33.3 0.0089 MD40
CsgA N2 R4 44 .4 0.0047 BL80
CsgA N2 R5 44.4 0.038 BL80
CsgB N R3 30.0 0.001 P120

In the alignments, we can recognize identical matches between asparagine, glutamine, glycine,
histidine, leucine, serine, and tyrosine (Fig. [19). In the case of CsgB we found only one signifi-
cant match (E-value = 0.001, 30% identity) between the sequence AGYDLANSEYNFAVNEL-
SKS (placed between 15 and 41 residue) and the region R3. These sequences shared homologous
positions of tyrosine, leucine, alanine, asparagine and serine (Fig. .

These findings suggest that initially, at least six regions could exist in the curli proteins. The
five stayed more conserved and the one degenerated. It is not inconceivable that the amyloid

fibrils were created by the six stretches of S-sheet in some ancestral forms.
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CsgA
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N1 SALAGVVPQYGGGGN

.....
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R1 PNSELN--IYQYGGGNSALALQT 10 20
10 20 N2 HGGGGNNSG
10 .

N1 SALAGVVPQYGGGGN

R2 RNSDLTITQHGGG---NGADVGQG

10 20
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10 20 7o
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N1  SALAGVVPQYGGGGN 10 20
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N1 SALAGVVPQYGGGGN
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10 20
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......

10 20 R3 GDYNLAYIDQAGSANDASISOQOG
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Figure 19: Statistically significant alignments found for N1 (17-31) and N2 (32-40) CsgA
sequences, as well as N (15-41) CsgB sequence with the five known repeating regions

(R1-R5). The alignments were produced in glsearch from FASTA package.

4.3.3 Prediction of the secondary structure of CsgA and CsgB

Using JPred, we predicted the secondary structure in CsgA and CsgB sequences (Fig. .
The applied algorithms made concordant predictions. The analyses showed that each of the
repeated regions consists of two [-strand, which are interrupted in the middle of the given
region. In most cases, the second strand in the regions ends with their boundaries, whereas the
first strand begins several residues later. Interestingly, in the fragment before the region R1

and between a signal peptide, S-strands were also predicted. This fragment includes sequences
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that showed similarity to already identified duplicated regions and can represent an additional
duplication. In the case of the CsgB protein, the sequence of the signal peptide was predicted
as a-helix, whereas in CsgA the prediction is ambiguous. One part of it can form an a-helix

and the other g-strand.

CsgA

Signal peptide

. 107 e - 4
RLLRvAA I AA I VFEGSAL AGYYPEYGEGGENHGGGONNSG]
Lupas_21 o

Lupas_14 |- - -
Lupas_28
jnetpred

JNETCONF

INETHMM i —
JNETPSSM — e
JNETJURY

Jnet Burial
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KNKL L FMMLT 1 LGAPG 1 AAA
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Figure 20: Secondary prediction for CsgA and CsgB sequences. Lupas 21, Lupas 14 and

Lupas_28 are coiled-coil predictions for the sequence; Jnet Burial is the prediction of solvent ac-
cessibility; JNetPRED is the consensus prediction; JNetCONF is the confidence estimate for the
prediction; JNetHMM is the HMM profile based prediction; JNETPSSM is the PSSM based predic-
tion; JNETJURY - ’* in this annotation indicates that the JNETJURY was invoked to rationalize
significantly different primary predictions. Helices are marked as red tubes and sheets as dark green

arrows.
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5 Phylogenetic analyses of CsgA and CsgB homologs

5.1 Research objectives

CsgA and CsgB sequences from E. coli have the same length, and demonstrate a similar
organization, consisting of signal peptide and five repeating regions. In spatial structure, they
are also very similar. Moreover, they interact with each other, and CsgB is a specific nucleator
protein of the extracellular self-assembly of CsgA |[Dunbar et al.,[2019]. These would suggest that
these proteins are phylogenetically related and should share a common ancestry. However, their
sequence similarity is quite weak, so their evolution should have been more complex. It would
be also possible that the organization and structure of these proteins evolved independently
and convergently. Therefore, we collected distant homologs to these proteins and conducted

extensive phylogenetic analyses to reconstruct their evolutionary history.

5.2 Materials and methods
5.2.1 Alignment of CsgA and CsgB sequences

Global (using the Needleman-Wunsch algorithm) and local (using the Smith-Waterman algo-
rithm) pairwise alignments of CsgA (P28307) and CsgB (POABKT) sequences from Escherichia
coli were conducted with needle and water applications from EMBOSS package |Rice et al.|
2000] at EMBL-EBI web site, respectively (https://www.ebi.ac.uk/Tools/psa/) (Fig. [21]). The
parameters of the alignments were matrix: BLOSUMG62, gap penalty: 10.0 and extend penalty:
0.5.

E. coli
global SgB local
loball locall
[ i
S EENES in needle in water S

Figure 21: Flowchart of alignment of CsgA and CsgB sequences.
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Figure 22: Flowchart of phylogenetic and analyses of CsgA and CsgB sequences.
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5.2.2 Searching for homologs

In order to collect a comprehensive, non-redundant and reliable set of homologs to CsgA and
CsgB proteins, we conducted extensive bioinformatic analyses, which consisted of many steps
(Fig. . At first, we searched, separately for the CsgA and CsgB sequences, the NCBI non-
redundant amino acid sequence database, consisting of 514,690,806 records, using PSI-BLAST
2.13.0+ [Altschul et al., [1997]. We assumed the word size = 2, E-value < 0.001 for saving
hits, and E-value < 0.0001 for the inclusion of sequences in the construction of the position-
specific scoring matrix (PSSM). We applied three iterations in these searches. The unique hits
from these two searches were selected to one set of 15,705 sequences, from which two with the
annotation “synthetic” were removed.

PSI-BLAST, i.e. Position-Specific Iterated Basic Local Alignment Search Tool, is used to
detect distant relationships between proteins. After finding homologous sequences to a query in
the first step, it calculates a profile or a position-specific score matrix (PSSM) from the multiple
alignment of the homologs. The PSSM captures the conservation pattern in the alignment
and stores it as a matrix of scores for each position in this alignment. Then, this profile is
used to search again the database to find sequences that match the pattern described by the
matrix. The newly selected sequences from this second round of the search are again added to
the alignment and the profile is refined. This process is iteratively run until a sufficient number
of homologs are collected or no new sequences can be detected above the assumed threshold.

Thereby, PSI-BLAST is capable of detecting more distant than a single search done in BLASTP.

5.2.3 Identification of conserved domains

We used RPS-BLAST with Conserved Domain Database 3.20 [Marchler-Bauer et al., [2013]
and each of the found sequences as a query to identify in them three domains that are char-
acteristic of CsgA and CsgB proteins: CDD:182211, PRK10051, csgA, major curlin subunit
CsgA; CDD:182242, PRK10101, csgB, curlin minor subunit CsgB; Provisional, CDD:429248,
pfam07012, CurlinS _rpt, Curlin associated repeat. We applied E-value < 0.01 in these searches.
Due to this approach, we identified 15,180 sequences that contained at least one of these do-

mains.

RPS-BLAST, i.e. Reverse Position-Specific BLAST, is a variant of the BLAST that searches
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a query sequence against a pre-calculated position-specific scoring matrix (PSSM) derived from
a set of related protein sequences. This allows for more sensitive and specific detection of
distant homologs and conserved domains specific for a protein family. Using RPS-BLAST,
we can search the Conserved Domain Database (CDD), which is a collection of pre-calculated

PSSMs for conserved protein domains, motifs, and functional sites.

5.2.4 Clustering and aligning of sequences

The obtained set of sequences was subjected to a clustering analysis made in CLANS (Cluster
Analysis of Sequences) software |Frickey and Lupas, [2004], which visualizes BLAST pairwise
sequence similarities in either two-dimensional or three-dimensional space. Analyzed sequences
are represented in the graph by vertices, which are connected by edges reflecting attractive
forces proportional to the negative logarithm of the P-value. In these BLASTP searches, we
used the word size 2 and E-value threshold 1. To automatically detect clusters of sequences, we
applied the network approach setting 2 as the minimum number of sequences per cluster. This
method assumes that each sequence forms a node of the input layer for a network. These nodes
emit the number of the cluster to which the sequence belongs.

The clustering resulted in 40 groups. Sequences in each cluster were aligned in MAFFT
7.505 |Katoh and Standley) 2013] using the slow and accurate algorithm E-INS-i with 1,000
cycles of iterative refinement except for the sequences of the most numerous cluster containing
as many as 5200 sequences, which were aligned by a much faster algorithm FFT-NS-I assuming
also 1,000 cycles. For each set of the aligned sequences, we calculated pairwise differences using
ClustalW 2.1 |Thompson et all|1994] and removed shorter sequences that were identical in the
aligned positions with longer ones. Thereby, the final set was reduced to 13,652 sequences and
was subjected to further studies. We searched in these sequences a potential signal peptide
using SignalP 6.0 [Teufel et al., [2022] assuming a slow model mode.

The sequences were also again clustered using the network algorithm in CLANS, which
produced 17 groups. The most abundant cluster including 9642 sequences was subjected to
additional separation into a further 17 clusters. Thus, the total number of clusters was 33. The

sequences in each cluster were once more aligned using the algorithm E-INS-i with 1,000 cycles

in MAFFT.
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5.2.5 Analyses of profile Hidden Markov models

For the results from multiple alignments of individual clusters, we constructed profile hid-
den Markov models (HMMs) using HMMER 3.3.2 package |Eddy, 1998, [2011]. The profiles
are probabilistic models that capture position-specific information about conservation of each
residue in each column of multiple sequence alignment. In other words, the profiles transform
the alignment into a position-specific scoring system.

Distance matrices between the produced profiles were generated with software pHMM-Tree
[Huo et al., 2017] after aligning them with the Profile Comparer PRC [Madera, 2008|. To recon-
struct the evolutionary relationships between the profiles, phylogenetic trees were created based
on the matrices in PAUP* 4.0a |[Swofford, 1998]. We applied three algorithms: minimum evo-
lution, balanced minimum evolution and Fitch-Margoliash criterion, i.e., weighted least squares
with power 2. In each tree construction, starting trees were obtained via random stepwise addi-
tion with 10 replicates followed by the branch-swapping algorithm tree-bisection-reconnection
(TBR) with a reconnection limit of 8. Using these three trees, a majority rule consensus was

produced.

5.2.6 Phylogenetic analyses

Based on the consensus tree of HMM profiles, 6097 sequences from the 15 most closely related
clusters including those grouping CsgA and CsgB proteins were selected. After the elimination
of fragmentary sequences, the set including 5764 sequences was used for further investigations.

The sequences were aligned with the algorithm E-INS-i with 1,000 cycles in MAFFT and all
positions in the alignment with gaps in at least 50% of sequences were removed using trimAl 1.4
|Capella-Gutiérrez et al., 2009]. This procedure provided the alignment with 145 most reliable
sites.

Based on this alignment, we inferred a maximum likelihood phylogenetic tree with IQ-TREE
2.2.0 [Minh et al., 2020] assuming EXS EHO-+R10 as the best-fit substitution model as found
according to BIC by ModelFinder |[Kalyaanamoorthy et al., [2017]| associated with this software.
In the tree inferring, we used the more thorough and slower NNI (nearest-neighbor interchange)
branch-swapping algorithm, which takes into account all possible NNIs instead of only similar

to the previous ones. Moreover, we assumed 1000 initial parsimony trees and 100 top initial
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parsimony trees to optimize with the NNI search to initialize the candidate set. To assess the
significance of clades, we applied the Shimodara-Hasegawa-like approximate likelihood ratio test
(SH-aLRT) with 10,000 replicates.

Moreover, to study in more detail the evolution of close homologs to CsgA and CsgB, we
selected sequences from the CLANS clusters that comprised the reference sequences of these
proteins from F. coli. Each of these clusters was grouped together with two other clusters
according to the tree based on HMM profiles. Sequences from these clusters were also chosen
to the sequences from the reference clusters. The set of close homologs to CsgA consisted
of 1083 sequences, whereas that of close homologs to CsgB included 1517 sequences. The
sequences were aligned with E-INS-i with 1,000 cycles in MAFFT and 151 reliable sites in each
of these multiple alignments were selected as described previously using trimAl. Phylogenetic
trees were constructed using the same methodology mentioned above assuming LG4M+R5 and

Q.plant+R6 substitution models for the CsgA and CsgB sets, respectively.

5.2.7 Analyses of individual duplicated regions

From the multiple sequence alignments, we extracted five regions as identified by MEME
motif searches in section 4.3.1. For these regions, we constructed HMM profiles and constructed
phylogenetic trees as described previously, but instead of a heuristic search, we applied an ex-
haustive search. Based on these profiles, logos were generated with the Skylign tool [Wheeler
et al. 2014], assuming information content: All. Pairwise differences (p-distance, i.e. fraction
of different positions) between sequences for the individual regions were calculated in ClustalW.
Differences between these distances were compared in the non-parametric unpaired Wilcoxon
test between CsgA and CsgB regions, whereas in the comparison of regions for the given set
of homologs CsgA or CsgB, we used the paired version of this test. The Spearman correla-
tion coefficient was also calculated between the distances in all combinations of these regions.
The Benjamini-Hochberg method was applied for p-value correction to control the false discov-
ery rate. P-values smaller than 0.05 were considered significant. The statistical analysis was

performed in R package [RStudio Team), 2020)].
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5.2.8 Other software used

Sequence alignments were inspected and studied in JalView [Waterhouse et al., 2009]. Phy-
logenetic trees were inspected and edited in MEGA 11 |Tamura et al. [2021]|. FigTree |[Rambaut
and Drummond} 2012] and functions from R package ggtree [Yu et al., 2023].

5.3 Results
5.3.1 Comparison of CsgA and CsgB sequences

Both sequences of CsgA and CsgB from Escherichia coli have the same length of 151 amino
acid residues and demonstrate the same structure consisting of a signal peptide, a separating
sequence and five repeating units of similar length (Fig. [3). They also are amyloids that interact
with each other [Zhou et al., 2012c|. All of that would suggest that these proteins are close
homologs with common and rather recent ancestry. However, the optimal global alignment

using the Needleman-Wunsch algorithm produced quite poor alignment, with only 22% identity

(Fig. [23).

CsgA 1 -———=———- MKLLKVAAIAAIVFSGSALAGVVPQYGGGGNHGGGGNNSGP 41

3 I N N e
CsgB 1 MKNKLLFMMLTILGAPGIAAA--AGYDLA-———-————————————————— 277

CsgA 42 NSELNIYQYGGGNSALALQTDARNSDLTITQHGGGNGADVGQGSDDSSID 91

[T].]. S 1 o e e L I
CsgB 28 NSEYNF------- AVNELSKSSFNQAAIIGQAGTNNSAQLRQGGSKLLAV 70

CsgA 92 LTQRGFGNSATLDQWNGKNSEMTVKQFGGGNGAAVDQTASNSSVNVTQVG 141

S R B R R R R R R
CsgB 71 VAQEGSSNRAKIDQ-TGDYNLAYIDQAGSANDASISQGAYGNTAMIIQKG 119

CsgA 142 FGNNATAHQY-----—-—-————————————— 151

R
CsgB 120 SGNKANITQYGTQKTAIVVQRQSOMAIRVTOQR 151

Figure 23: Global alignment between CsgA (P28307) and CsgB (POABKY) sequences.

The optimal local alignment using the Smith-Waterman algorithm was not better. It in-

creased the identity to only 30% (Fig. [24).
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It would suggest that these proteins are not at least close homologs. These analyses imply
also that the sequence organization of CsgA and CsgB could evolve in converge and their
evolution was more complicated. Therefore, we decided to study this subject in detail using a

more advanced approach.

CsgA 42 NSELNIYQYGGGNSALALQTDARNSDLTITQHGGGNGADVGQGSDDSSID 91

[1].1. : S e O e v e T
CsgB 28 NSEYNF------- AVNELSKSSFNQAAIIGQAGTNNSAQLRQGGSKLLAV 70

CsgA 92 LTQORGFGNSATLDQWNGKNSEMTVKQFGGGNGAAVDQTASNSSVNVTQVG 141

D L O T O e A O O - I e I
CsgB 71 VAQEGSSNRAKIDQ-TGDYNLAYIDQAGSANDASISQGAYGNTAMIIQKG 119

CsgA 142 FGNNATAHQY 151
SR
CsgB 120 SGNKANITQY 129

Figure 24: Local alignment between CsgA (P28307) and CsgB (POABKY) sequences.

5.3.2 Collection of CsgA and CsgB homologs

Since CsgA and CsgB sequences from E. coli show a very poor sequence similarity, we
applied a sensitive search using PSI-BLAST dedicated to distant homologs. Thanks to this
approach, we collected the set of 15,703 potential homologous sequences in separated searches
for these curli proteins. It can be added that these sequenced showed no significant similarity
at the assumed threshold E-value < 0.001 after the first iteration. The CsgA found the CsgB
after the second searching iteration with E-value 9.4E-10, whereas CsgB identified CsgA only
after the third iteration with E-value 2.4E-10. It means that they are distant homologs, but
the significant similarity can be confirmed after more sensitive searches. From that, we selected
15,180 sequences that contained at least one of three conserved curlin domains identified in the
reference CsgA and CsgB proteins (Tab. @ In the vast majority of cases, more than 95%,
the curlin domain was found as the best hit. Among sequences with the curlin domains, 488
contained also other domains. Some of them can represent spurious hits. The most common
was CDD:227596, i.e., AAA ATPase containing von Willebrand factor type A (vWA) domain,

found in 118 cases. Some of them can represent spurious hits.
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Table 9: Result of searches for curlin domains (CDD:182211, CDD:182242 and
CDD:429248) in the set of collected CsgA and CsgB homologs.

Type of hits Number Percent
Curlin domain found as the best hit 15,029 95.7
Curlin domain found but not as the best hit 151 1.0

Only other domain was found 165 1.1

No domain was found 358 2.3

5.3.3 Taxonomic distribution of CsgA and CsgB homologs

The taxonomic distribution of CsgA and CsgB homologs (Tab. indicates that they
are in majority representatives of Bacteria and in this domain of life these proteins mainly
evolved. More than 98% of sequences are annotated as bacterial. Their presence in other
domains of life can be associated with a horizontal gene transfer, e.g., to viruses and other
bacterial groups. However, the contamination of samples cannot be excluded, and these cases
should be individually verified. It concerns especially those obtained from metagenomics studies
and draft genomic sequencing. Other sequences can represent false positives, especially those in
higher eukaryotes, e.g., K™ dependent Na~/Ca™ exchanger and AAA ATPase with vWA domain
in a higher plant, collagen a-1 and ABC transporter F in crustaceans, a zinc finger protein,
dynein and intraflagellar transport protein in fishes as well as histone-lysine N-methyltransferase
in birds. Some regions of these sequences due to specific features can resemble curli protein

sequences, which is an interesting example of molecular convergence.
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Table 10: Taxonomic distribution of CsgA and CsgB homologs in domains of life
and their main groups.

Domain  Group Number Percent
Archaea Euryarchaeota 11 84.62
Archaea Candidatus_Pacearchaeota 2 15.38
Eukaryota Metazoa 123 72.78
Eukaryota Viridiplantae 37 21.89
Eukaryota Fungi 7 4.14
Eukaryota SAR 2 1.18
Bacteria Proteobacteria 12795 85.31
Bacteria Bacteroidota 1825 12.17
Bacteria Firmicutes 116 0.77
Bacteria Balneolaeota 68 0.45
Bacteria Actinobacteria 28 0.19
Bacteria Nitrospinae Tectomicrobia group 22 0.15
Bacteria others 18 0.12
Bacteria Nitrospirae 18 0.12
Bacteria Calditrichaeota 16 0.11
Bacteria Chlorobi 16 0.09
Bacteria Ignavibacteriae 13 0.08
Bacteria Rhodothermaeota 12 0.06
Bacteria Thermodesulfobacteria 9 0.04
Bacteria Cyanobacteria 6 0.03
Bacteria Fibrobacteres 5 0.03
Bacteria Candidatus _Dadabacteria 4 0.02
Bacteria Aquificae 3 0.02
Bacteria candidate division KSB1 3 0.02
Bacteria Patescibacteria_group 3 0.01
Bacteria Acidobacteria 2 0.01
Bacteria Candidatus__Auribacterota 2 0.01
Bacteria Candidatus_Poribacteria 2 0.01
Bacteria Chloroflexi 2 0.01
Bacteria environmental samples 2 0.01
Bacteria Kiritimatiellaeota 2 0.01
Bacteria Parcubacteria_group 1 0.01
Bacteria Planctomycetota 1 0.01
Viruses Duplodnaviria 3 0.02
Viruses environmental samples 1 0.01
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Table 11: Taxonomic distribution of CsgA and CsgB homologs in selected bacte-
rial groups.

Group Subgroup Number Percent
Bacteroidota Flavobacteriia 1010 55.34
Bacteroidota Cytophagia 471 25.81
Bacteroidota Bacteroidia 160 8.77
Bacteroidota Bacteroidetes 85 4.66
Bacteroidota other 50 2.74
Bacteroidota Saprospiria 40 2.19
Bacteroidota Sphingobacteriia 7 0.38
Bacteroidota Chitinophagia 1 0.05
Bacteroidota environmental 1 0.05
Proteobacteria ~-Proteobacteria 8986 70.23
Proteobacteria a-Proteobacteria 3076 24.04
Proteobacteria  (B-Proteobacteria 648 5.06
Proteobacteria  d-Proteobacteria 43 0.34
Proteobacteria other 23 0.18
Proteobacteria (-Proteobacteria 9 0.07
Proteobacteria  Oligoflexia 7 0.05
Proteobacteria Hydrogenophilalia 2 0.02
Proteobacteria e-Proteobacteria 1 0.01

The most abundant in curli homologs in Bacteria are Bacteroidota and Proteobacteria (Tab.
[10]and[L1} They constitute, 85% and 12% , respectively. Considering their subgroups, the largest
number of homologs was detected in Flavobacteriia (55% of Bacteroidota) «-Proteobacteria
(24% of Proteobacteria) and y-Proteobacteria (70% of Proteobacteria) (Tab. [12)), which indicates
that these proteins evolved mainly in these groups. Among a-Proteobacteria, Hyphomicrobiales
(56%) has most of the homologs, whereas in y-Proteobacteria, Enterobacterales (43%) and
Pseudomonadales (29%) are most abundant (Tab. [L2)). The sequences are not evenly distributed
across subgroups. It can be related with the bias in the number of sequenced genomes associated

with a preference of researchers and the ease of culturing and isolation from the environment.
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Table 12: Taxonomic distribution of CsgA and CsgB homologs in domains of life

and their main groups.

Group Subgroup Number Percent
a-Proteobacteria Hyphomicrobiales 1717 55.82
a-Proteobacteria  Sphingomonadales 592 19.25
a-Proteobacteria Rhodobacterales 356 11.57
a-Proteobacteria Hyphomonadales 117 3.80
a-Proteobacteria  other 108 3.51
a-Proteobacteria  Rhodospirillales 82 2.67
a-Proteobacteria Maricaulales 45 1.46
a-Proteobacteria  Caulobacterales 42 1.37
a-Proteobacteria  Parvularculales 7 0.23
a-Proteobacteria  Rickettsiales 6 0.20
a-Proteobacteria Emcibacterales 4 0.13
~v-Proteobacteria Enterobacterales 3833 42.66
~v-Proteobacteria Pseudomonadales 2626 29.22
~v-Proteobacteria  Alteromonadales 1114 12.40
~v-Proteobacteria  Oceanospirillales 406 4.52
~v-Proteobacteria  Vibrionales 304 3.38
~v-Proteobacteria  Cellvibrionales 261 2.90
~v-Proteobacteria Aeromonadales 216 2.40
~v-Proteobacteria  other 93 1.03
~v-Proteobacteria  Chromatiales 71 0.79
~v-Proteobacteria Methylococcales 20 0.22
~v-Proteobacteria Moraxellales 10 0.11
~v-Proteobacteria  Nevskiales 10 0.11
~v-Proteobacteria  Gallaecimonas 6 0.07
~v-Proteobacteria ~Xanthomonadales 6 0.07
~v-Proteobacteria  sulfur-oxidizing 4 0.04
~v-Proteobacteria  Thiotrichales 3 0.03
~v-Proteobacteria  Candidatus 2 0.02
~v-Proteobacteria  Pasteurellales 1 0.01
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5.3.4 Initial clustering of CsgA and CsgB homologs

In order to comprehend such a huge set of sequences, we carried out their clustering in
CLANS based on the results of pairwise BLASTP searches. The algorithm distributed the
studied sequences in two-dimensional space according to their BLAST pairwise sequence simi-
larities (Fig. . Each sequence is represented by a point in the plot, and lines correspond to

attractive forces proportional to the significance of the similarity.

CsgB

C1

co

CsgA

Figure 25: Analysis of 15,180 CsgA and CsgB homologs in CLANS showing identified
clusters. The analyzed sequences are represented by vertices connected by edges reflecting attractive
forces proportional to the negative logarithm of P-value. The grayness intensity of the connections is
proportional to these forces. Recognized clusters were marked by different colors. The most numerous

are indicated as CO and C1. Yellow circles represent the reference CsgA and CsgB sequences.

The analysis distinguished 40 clusters including from 4 to 5200 sequences. The clusters are

marked by various colors in the plot. The most numerous cluster CO is located in the center
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of the plot and surrounded by smaller ones. Six clusters are clearly separated from the main
grouping in the center. Among them are those that contain the reference sequences of CsgA
and CsgB, which are separated into two different clusters located at a great distance from each
other. The CsgA cluster is the most distantly placed from the middle of the plot. Although
members of these two clusters are not directly connected by the lines, other clusters relate them.
The CsgA cluster is strongly connected with cluster C1, which is very close to the CsgB cluster.
The results indicate that CsgA and CsgB are distant homologs not directly related and CsgB

is more similar to other sequences than CsgA.

CsgB
® Archaea
@ Bacteria
CsgA © Eukaryota
o ©Viruses

Figure 26: Analysis of 15,180 CsgA and CsgB homologs in CLANS, showing sequences
from domains of life. The analyzed sequences are represented by vertices connected by edges
reflecting attractive forces proportional to the negative logarithm of the P-value. The grayness
intensity of the connections is proportional to these forces. Yellow circles represent the reference

CsgA and CsgB sequences.
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Most homologs (14,993) that were found belong to the Bacteria domain, which are widely
distributed in the plot (Fig. . Only 4 were found in viruses, 13 in Archaea and 169 in
Eukaryota. The archaeal and eukaryotic (169) sequences are mainly grouped in the center,
whereas viral sequences are placed at various locations. Some of them are distantly located
from others and represented by separate points. Some eukaryotic sequences are placed close to

CsgA homologs.

O Bacteroidota

@ o-Proteobacteria

O B-Proteobacteria

O other y-Proteobacteria

@ Enterobacterales ng B
@ Pseudomonadales| selected o

@ Alteromonadales |y-Proteobacteria

@ Oceanospirillales |groups

@ Vibrionales

CsgA

Figure 27: Analysis of 15,180 CsgA and CsgB homologs in CLANS, showing sequences
from selected bacterial groups. The analyzed sequences are represented by vertices connected
by edges reflecting attractive forces proportional to the negative logarithm of P-value. The grayness
intensity of the connections is proportional to these forces. Yellow circles represent the reference

CsgA and CsgB sequences.

Since the most abundant are bacterial sequences, we marked the most numerous bacterial

groups in the CLANS plot (Fig. . Bacteroidota sequences are separated into two main groups



5.3 Results 77

in the center of the plot, 3-Proteobacteria are placed in the middle too. Some «-Proteobacteria
sequences are also located in the center, but others create one clear group at the border of the
central groupings and two distantly located. Selected v-Proteobacteria subgroups are distributed
into separated sets. FEnterobacterales are placed in two groups, including the reference CsgA
and CsgB sequences, clearly isolated from others. Pseudomonadales are present in at least
three groups at the boundary of the main set. Alteromonadales and Oceanospirillales are inside
the plot, but at least two groups for each of them can be recognized. Vibrionales are clearly
separated from the main grouping. The distribution of these sequences suggests that CsgA and
CsgB homologs are the most abundant among Proteobacteria, but some homologs can be also
found in Bacteroidota. The presence of many separated clusters with a main grouping indicates
a rapid differentiation of curli proteins into various subgroups and further expansion in one
taxonomic clade. However, sequences affiliated with one taxonomic clade are often separated,
which means that some duplications could occur before this clade evolved and/or the sequences
were subjected to rapid differentiation. This applies also to Enterobacterales sequences, which

are clearly separated.

5.3.5 Signal peptide prediction

The inspection of obtained multiple sequence alignments showed that many sequences are
truncated and fragmentary. Therefore, we removed them, leaving their identical but longer
homologs. It resulted in a set of 13,652 sequences, which were further studied.

Since the CsgA and CsgB proteins are equipped with an N-terminal signal peptide respon-
sible for their extracellular transport, we searched for this feature (Tab. [13).

Table 13: Results of signal peptide prediction in 13,652 CsgA and CsgB homologs.

Feature Number Percent
SP (Sec/SPI) 12760 93.47
OTHER (no SP) 778 5.70
LIPO (Sec/SPII) 113 0.83
TAT (Tat/SPI) 1 0.01

The analyses showed the presence of the Sec signal peptide (Sec/SPI), which is a “standard”
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secretory signal peptide, transported by the Sec translocon and cleaved by Signal Peptidase I
(Lep). It was identified in more than 93% of sequences. For almost 95% of them, the probability
was greater than 0.9. Less than 1% of sequences revealed a lipoprotein signal peptide (Sec/SPII),
which is transported by the Sec translocon and cleaved by Signal Peptidase II (Lsp). They can
represent false positives because we found no specific taxonomic distribution of these sequences.
Only one sequence showed, with a low probability of 0.43, Tat signal peptide (Tat/SPI), which
is transported by the Tat translocon and cleaved by Signal Peptidase I (Lep). In almost 6%
of sequences, no signal peptide was predicted. Among them, there are also many eukaryotic
sequences. In the case of bacterial sequences showing the unquestionable presence of the curlin
domains, the negative results can be related to the incompleteness of their N-terminal ends.
The cleavage site of the signal peptide was predicted with a median probability of 0.978.
More than 91% of cases showed a probability greater than 0.95 The length of the predicted
signal peptide varied from 3 to 67 residues, but almost 63% of cases were in a narrow range

from 20 to 22 and 83% from 20 to 26 (Fig. 28).
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Figure 28: The distribution of signal peptide length predicted in 12760 CsgA and CsgB

homologs.

The shortest signal peptides were predicted with very low probability. The length of most
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peptides corresponds well to those annotated in UniProt |UniProt Consortium, 2018|] for E.
coli CsgA and CsgB, which are 20 and 21 residues long. The peptide for CsgA was verified
experimentally [Arnqvist et al., [1992|. The results indicate that the most collected homologs
demonstrate a typical CsgA and CsgB structure, including the N-terminal signal peptide.

5.3.6 Clustering of the refined set of CsgA and CsgB homologs

After removing the shorter sequence, we clustered again the sequences in CLANS. The al-
gorithm identified 17 main groups (Tab. , Fig. . Similarly to the previous clustering,
the center of the plot is occupied by one huge cluster, which is surrounded by smaller dis-
tinct clusters. Clusters including CsgA and CsgB reference sequences, C6 and C1 respectively,
are similarly located as previously, but the algorithm recognized additional clusters in their

neighborhood. They are C3 and C5 at C6 and C2 with some sequences from C0 at C1.

Table 14: Clusters and their count identified for 13652 CsgA and CsgB homologs

in CLANS.

Cluster Number Percent
Co 9642 70.63
C1 (CsgB) 572 4.19
C2 570 4.18
C3 442 3.24
C4 412 3.02
C5 373 2.73
C6 (CsgA) 366 2.68
c7 346 2.53
C8 279 2.04
C9 193 1.41
C10 185 1.36
C11 111 0.81
C12 88 0.64
C13 50 0.37
C14 16 0.12
C15 4 0.03

C16 3 0.02
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Figure 29: Analysis of CsgA and CsgB homologs in CLANS, showing 17 main groups.
The analyzed sequences are represented by vertices connected by edges reflecting attractive forces
proportional to the negative logarithm of the P-value. The grayness intensity of the connections is

proportional to these forces. Yellow circles represent the reference CsgA and CsgB sequences.

Applying the next step of clustering, we separated the most numerous cluster C0 into smaller
ones, whose number was also 17 (Tab[15 Fig. 30). They formed distinct groups in the CLANS
plot, and the number of their members was comparable with those found in the previous step.

The 33 clusters determined in these analyses were subjected to further studies.



5.3 Results

Table 15: Clusters and their count identified for the most numerous cluster CO
in CLANS.

Cluster Number Percent

CO_0 2896 30.04
Co 1 1491 15.46
Co 2 950 9.85
Co_ 3 720 7.47
CO 4 686 7.11
Co 5 638 6.62
CO 6 472 4.90
Co 7 458 4.75
Co 8 457 4.74
CO 9 260 2.70
Co 10 152 1.58
Co 11 130 1.35
co 12 130 1.35
Co 13 97 1.01
CO 14 60 0.62
Co 15 37 0.38

C0_16 8 0.08




5.3 Results 89

Figure 30: Re-analysis of CsgA and CsgB CO cluster in CLANS, showing 17 main groups.
The analyzed sequences are represented by vertices connected by edges reflecting attractive forces
proportional to the negative logarithm of the P-value. The grayness intensity of the connections is

proportional to these forces. Different colors represent different groups.

5.3.7 Phylogenetic relationships between clusters and sequences of curli homologs

To infer evolutionary relationships between the identified 33 clusters, we calculated a con-

sensus phylogenetic tree based on HMM profiles produced from alignments of sequences from

each cluster (Fig. BI).
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Figure 31: The consensus tree is based on HMM profiles grouping clusters of CsgA and

CsgB homologs. On the right, a taxonomic distribution of a given cluster was presented. Numbers

at branches indicate the number of trees, out of three, that produced a given branching pattern.

Most groupings in the tree were congruently inferred by three methods. Some inconsistencies

were for deep branches because one method produces a different topology. Clusters for CsgA

and CsgB are clearly separated and significantly grouped with the clusters that were adjacent

to them also in the CLANS result. These clusters are dominated by representatives of Enter-
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obacterales, which are not present in such a high abundance in other clusters. The CsgB cluster
with its relatives is grouped with three others, including almost exclusively a-Proteobacteria
representatives. Nevertheless, it should be noticed that the CsgA and CsgB clusters are in
some way related when considering the whole tree. They are collectively present in a sub-
tree, including almost half of all clusters, and separated from the rest. Besides two separated
groups of Enterobacterales, there are also clusters of other taxonomic groups that do not always
form monophyletic clades and are separated in the tree. It concerns, e.g., a-Proteobacteria,
B-Proteobacteria, and Pseudomonadales. There are also heterogeneous clusters including se-
quences from various taxonomic groups. Three clusters comprise eukaryotic sequences from
fungi and animals (Metazoa) in a significant monophyletic clade. The separation of sequences
from the main groups of Proteobacteria indicates that the CsgA and CsgB homologs duplicated
before the divergence of these groups.

Based on the results, we selected to further analyses sequences from 15 clusters (C1-C6,
C12, C0_2, CO_4-CO0_6, CO_9, CO_11, CO_12, CO_16) that were grouped together and in-
cluded the CsgA and CsgB clusters in the HMM profile phylogeny. Using their alignment, we
inferred a maximum likelihood phylogenetic tree (Fig. . It revealed the presence of the
clade including many «-Proteobacteria sequences and also some 3-Proteobacteria, which are
clearly separated from other sequences coming mainly from ~-Proteobacteria. This split is sig-
nificant, with 95%. In the second clade, we can identify four main lineages. The first group with
100% support contains almost exclusively representatives of Enterobacterales including the ref-
erence CsgA sequence. The second clade contains mostly Bacteroidota with 93% support. The
third, supported in 96%, comprises predominantly other ~-Proteobacteria sequences, whereas
the fourth clade clusters with 80% support Enterobacterales including the CsgB reference and
other v-Proteobacteria representatives.

This topology demonstrates a significant partition on two Enterobacterales clades including
the reference curli proteins and suggests that the separation of CsgA and CsgB occurred after
the divergence of v-Proteobacteria from «- and (-Proteobacteria but before the differentiation
of y-Proteobacteria lineages. In the main groups marked in the tree (Fig. , there are also
placed individual sequences or their small bunches assigned to other taxonomic groups, e.g.,

among v-Proteobacteria sequences there are also Bacteroidota as well as a- and 3-Proteobacteria
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representatives, which can suggest a horizontal gene transfer. Similarly, the closer relation
of the second clade comprising Bacteroidota with ~-Proteobacteria than the latter with a-
Proteobacteria can suggest that the Bacteroidota acquired a CsgA homolog via horizontal gene

transfer just from v-Proteobacteria.

Enterobacterales

CsgB\ |

other y-Proteobacteria other y-Proteobacteria

Bacteroidota

Enterobacterales

CsgA

0.5
aa subsitutions/site

a-Proteobacteria

Figure 32: The maximum likelihood tree based on the alignment of 5764 sequences shows
a close similarity to the reference CsgA and CsgB sequences. Numbers at nodes correspond
to support values calculated by SH-aLRT procedure. Only selected support values at deep branches

were shown. Branches of the most numerous bacterial groups were colored and labeled.
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5.3.8 Phylogenetic relationships between Enterobacterales curli homologs

In order to analyze in detail the phylogeny of CsgA and CsgB proteins in Enterobacterales,
we inferred separate trees for appropriate sequences. They were derived from clusters C3, C5
and C6 in the case of CsgA as well as C1, C2 and C06 for CsgB.

In the phylogenetic tree of CsgA homologs (Fig. , we can notice a big clade including
almost all sequences from FEnterobacteriaceae, which is significantly separated from the other
group. It comprises sequences assigned to Yersiniaceae, which do not form a monophyletic
group but separate sequentially on the tree. The next diverging lineages belong to Kluyvera
and Shimwellia classified to Enterobacteriaceae and are sisters to a smaller monophyletic clade of
Budviciaceae. Interestingly, within Enterobacteriaceae is placed a sequence assigned to a fungus
Astraeus odoratus, and among Yersiniaceae, sequences annotated to Pseudomonas reactans from
Pseudomonadales. 1t suggests a horizontal gene transfer from Enterobacter to Astraeus odoratus
and from Fwingella to Pseudomonas reactans. However, these sequences come from the draft
and whole genome sequencing, so should be verified in terms of contamination.

The tree of CsgB homologs also contains a significant clade grouping many FEnterobacte-
riaceae taxa (Fig. . The second main clade also comprises members of Budviciaceae and
Yersiniaceae, but the former is here monophyletic as the latter. Interestingly, an additional clade
appears, which includes representatives of Hafniaceae and is a sister to Yersiniaceae. Similarly,
to the CsgA tree, there are Enterobacteriaceae sequences from Kluyvera and also Klebsiella,
which are separated from the main clade but are significantly grouped with the second one.
We can also notice Pseudomonas reactans sequence coming from the same sequencing project
as its CsgA sequence. It is also clustered with Fwingella suggesting a horizontal gene transfer.
Another case of transfer can demonstrate a sequence assigned to Bacteroidales bacterium, which
was obtained from metagenomic sequencing of the coral skeleton |Cardenas et al., [2022].

In these two trees, some Enterobacteriaceae genera (Kluyvera, Shimwellia and Klebsiella)
are clearly separated from the main clade, which can suggest a horizontal gene transfer to them
from other Enterobacterales families. Alternatively, these genera should not be classified to the
current family but assigned to another. In both trees, there are sequences assigned to individual
genera and species, which are clustered into monophyletic clades, but there are exceptions. They

can be incorrectly assigned to the current taxon.
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Escherichia coli; Shigella 8 (499 taxa)
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Figure 33: The maximum likelihood tree based on the alignment of 1083 sequences derived
from clusters C3, C5, and C6 shows a close similarity to the reference CsgA sequence.
Numbers at nodes correspond to support values calculated by SH-aLRT procedure. Many branches
including representatives of the same genus or species were compressed. The most abundant taxon
was bolded. The number of taxa in minority was shown, as well as the total number of sequences in

the clade.
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Figure 34: The maximum likelihood tree based on the alignment of 1083 sequences de-
rived from clusters C1, C2, and C06 shows a close similarity to the reference CsgB
sequence. Numbers at nodes correspond to support values calculated by the SH-aLRT procedure.
Many branches including representatives of the same genus or species were compressed. The most
abundant taxon was bolded. The number of taxa in minority was shown, as well as the total num-
ber of sequences in the clade. Sequences obtained from the clusters contained representatives not
only from Enterobacterales but also from other bacterial taxonomic groups, which were significantly

grouped in one clade and used as an outgroup.

5.3.9 Variation of duplicated regions in Enterobacterales curli homologs

In order to study the evolution of repeating regions in curli proteins, we derived them from
alignments of the Enterobacterales sequence and inferred their phylogenetic relationships based
on their HMM profiles (Fig. . All three approaches produced very similar topology. Regions
derived from a given type of curli protein, CsgA or CsgB, are grouped together. In the case of
CsgA regions, R3 is closely related with R5 and R1 with R4. R2 is the sister to the latter. CsgB
regions showed a different clustering. R3 grouped with R4 and next clustered with R1. R2 and

R5 are joined together in two minimum evolution methods, whereas in FM R2 is sister to R3,



5.3 Results 89

R4 and R1 clade. It can be also noticed that region 5 from CsgB shows the largest divergence
in comparison to others. Among CsgA regions, R1 is the most divergent.

These relationships can present a potential order of duplication of these regions. The results
indicate that the regions were duplicated in a different order in these two curli proteins and

regions in one protein are more closely related with themselves than with regions in the other

protein.
BME (2 FM “o002
R3 CsgB R3 CsgB
R4 R4
R1 R1
R2 R2
R5 R5
R1 CsgA | R1 CsgA
R4 R4
R2 R2
R3 R3
R5 R5
ME (o7 Consensus
R3 CsgB 3 r3 CsgB
2 S e B
R1 3 R1
R2 2 —  R2
R5 L R5
R1 CsgA 1 3 R1 CsgA
R4 3 { R4
R2 3 R2
R3 3 — RS
RS L R5

Figure 35: Trees produced by balanced minimum evolution (BME), minimum evolution
(ME) and Fitch-Margoliash criterion (FM) as well as a consensus tree based on HMM
profiles grouping duplicated regions of CsgA and CsgB homologs from Enterobacterales.
Numbers at branches in the consensus tree indicate the number of trees, out of three, that produced

a given branching pattern.
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Figure 36: Sequence logos based on HMM profiles of five duplicated regions from Enter-

obacterales CsgA sequences.

In Fig. 36| and 7], we presented sequence logos derived from the HMM profiles of five dupli-
cated regions from Enterobacterales curli proteins. All CsgA regions share conserved glutamine
in the 9th and 20th positions, as well as asparagine in the 14th position. Quite conserved is also

the third position with serine, the 11th position with glycine and the 16th position with alanine.
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In the 13th position, there is also dominated glycine. The 7th position can be also considered
conserved in respect of the presence of hydrophobic residues. Some sites share similar residues
only between some regions that discriminate them from others, e.g., R1, R3, R4 and R5 have
mostly hydrophobic residues, whereas R2 polar tyrosine in the 5th position; R3 and R5 have
phenylalanine, whereas R1, R2 and R4 glycine in the 12th position; R2, R3 and R5 have thre-
onine, whereas R1 tyrosine and R4 serine in the 8th position. The positions 6, 15, and 18 can
group some regions in pairs containing the same dominated amino acid: R24+R4 and R1+R5;
R1+R3 and R2+R4; R2+R4 and R1+R5, respectively. The same can be applied to positions
17 and 19, which can cluster R3+R5 and R3-+R4, respectively. Three positions, i.e., 1, 10, and
21 are unique for each region in terms of the most common residue.

The CsgB regions also contain conserved residues in many positions, i.e., glutamine in the
10th and 21st positions, alanine in the 6th position, hydrophobic residues in the 8th and 19th
positions, as well as polar residues in the 13th position. In three positions, i.e., 12, 15 and 17,
there is the same dominant amino acid in four regions, from R1 to R4. They have predomi-
nantly glycine, asparagine and alanine, whereas R5 has glutamine, methionine and isoleucine,
respectively. In turn, in the 7th position R1, R2, R4 and R5 contain hydrophobic residues,
whereas R3 polar tyrosine. Glycine is also dominated in the first and 14th positions in R1, R2
and R4 as well as R2, R3 and R5, respectively. The 5th position can cluster R4 with R5 due
to common threonine and R2 with R3 due to common leucine. In the 4th position, R3 and R4
share asparagine in contrast to others. The same amino acid is also present in R4 and R5 in
positions 9 and 20. Six positions, 2, 3, 11, 16, 18, and 21, are distinct across all these regions

in terms of preferred residues.
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Figure 37: Sequence logos based on HMM profiles of five duplicated regions from Enter-

obacterales CsgA sequences.

Pairwise comparisons of Enterobacterales sequences for the individual regions indicate that
they evolved at a different rate (Tab. . Generally, CsgA regions showed a larger variation
(median 0.24) than CsgB (0.23). Considering the individual regions in CsgA homologs, the
smallest fraction of different positions (p-distance) revealed region R5, with a median of 0.19

(Fig. [38)). R2 regions were more different (0.24), R1 and R3 showed identical median values of
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0.29, whereas the most divergent occurred in R4 (0.38). In the case of CsgB regions, R5 and
R4 accumulated the smallest number of substitutions (Fig. [38). Their median value was the
same, i.e. 0.14. A greater distance showed R1 and R3, i.e. 0.27, whereas the largest difference
was R2 (0.3). All differences were statistically significant with p-value < 2.2e-16.

Table 16: Median and 25% and 75% quartiles for pairwise distance (i.e. a fraction
of different positions) between regions of CsgA and CsgB homologs.

Region CsgA CsgB

R1 0.286 [0.048-0.381] 0.273 [0.182-0.364]
R2 0.238 [0.048-0.286] 0.318 [0.182-0.409)
R3 0.286 [0.048-0.333]  0.273 [0.182-0.364]
R4 0.381 [0.095-0.429]  0.136 [0.091-0.227]
R5 0.191 [0.048-0.333]  0.136 [0.046-0.182)
All 0.238 [0.095-0.381]  0.227 [0.091-0.364]

CsgA CsgB

Figure 38: Box-plots of pairwise distance (i.e. fraction of different positions) between
sequences for the individual regions of CsgA and CsgB homologs. The thick line indicates

the median, the box shows the quartile range, and the whiskers denote the range without outliers.
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We also checked how the differences between the regions are correlated during evolution
(Tab. . Interestingly, they showed quite high significant correlations. The largest correlations
showed the regions in CsgA homologs, from 0.83 to 0.89, whereas in CsgB homologs, they were
smaller, from 0.76 to 0.84. The most correlated occurred R1 with R3 as well as R3 with R4 in
CsgA, whereas in CsgB, R1 with R4 and R3 with R4. All these correlations were statistically
significant with p-value < 2.2e-16. Generally, correlations between adjacent regions are larger
than those between more distant regions. The median for these regions type is 0.875 vs 0.866
for CsgA and 0.793 vs 0.775 for CsgB. The more coordinated evolution in CsgA regions can
be related to more important interactions between them in this protein. The interactions of
individual regions in CsgA are necessary to create amyloid fibrils, whereas CsgB is only an
initiator of this process [Hammer et al., |2007, Shu et al., |2012]. All these correlations were
statistically significant with p-value < 2.2e-16.

Table 17: Spearman correlation coefficients between p-distances (fraction of dif-

ferent positions) calculated for pairwise region comparisons for CsgA (the upper
triangle) and CsgB homologs (the lower triangle).

R1 R2 R3 R4 R5

R1 - 0.883 0.892 0.884 0.865
R2 0.800 - 0.868 0.867 0.862
R3 0.782 0.762 - 0.890 0.833
R4 0.837 0.757 0.844 - 0.850

R5 0.759 0.800 0.767 0.786 -
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6 Structural variability of CsgA and CsgB variants

6.1 Research objectives

The other goal of this investigation was to verify the importance of the various repeating units
of functional amyloids, i.e., CsgA and CsgB proteins, participating in amyloid fibril formation
(Fig. . We would like to find out which regions are involved in aggregation and how they
affect its rate. In addition, we wanted to verify if the different variants of these proteins have
altered aggregation characteristics and how the reactions between these regions can change. To
achieve that, we designed, manufactured, and purified selected CsgA and CsgB variants, which

were verified by ThT assay and AFM.

6.2 Materials and Methods
6.2.1 Cloning of csgA and csgB

Six variants of CsgA (Tab. and six of CsgB (Tab. proteins were selected according
to the bioinformatic results and scientific papers. Based on other work [Wang et al., |2008], we
decided to use proteins with deletions of particular regions that, although very similar, do not
have the same functions. We then analyzed the sequences we designed using our AmyloGram
predictor to see if these proteins still have amyloidogenic properties. We then wanted to validate
this prediction experimentally and check on HDX-MS which regions interact with each other.
Besides the wild type (WT), we studied variants that are characterized by the deletion of one
of the five repeating units. Moreover, in each protein, we removed the signal peptide region and
added His-tag to be able to purify it on the column. Based on them, appropriate nucleotide
sequences were prepared, which were cloned and expressed by standard genetic procedures in
FEscherichia coli BL21 strain |[Zhou et al.,|2012b, |Andreasen et al.;[2019b]. In the case of deletions
in the curli gene region, we used the PCR overlapping technique [Bryksin and Matsumura, 2010
and PIPE (Polymerase Incomplete Primer Extension) technique [Klock and Lesley, 2009].
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Table 18: List of studied variants of CsgA proteins.

Variant

Sequence

CsgA WT

GVVPQYGGGGNHGGGGNNSGPNSELNIYQYGGGNSALALQT
DARNSDLTITQHGGGNGADVGQGSDDSSIDLTQRGFGNSATL
DQWNGKNSEMTVKQFGGGNGAAVDQTASNSSVNVTQVGFG
NNATAHQYEHHHHHH

CsgA ASPARI1 6xHis

GVVPQYGCGGGNHGGGGNNSGPNSDLTITQHGGGNGADVGQG
SDDSSIDLTQRGFGNSATLDQWNGKNSEMTVKQFGGGNGAA
VDQTASNSSVNVTQVGFGNNATAHQYEHHHHHH

CsgA ASPAR2 6xHis

GVVPQYCCGGGNHGGCGNNSGPNSELNIYQYGGGNSALALQT
DARNSSIDLTQRGFGNSATLDQWNGKNSEMTVKQFGGGNGA
AVDQTASNSSVNVTQVGFGNNATAHQYEHHHHHH

CsgA ASPARS 6xHis

GVVPQYGGGGNHGGGGNNSGPNSELNIYQYGGGNSALALQT
DARNSDLTITQHGGGNGADVGQGSDDSEMTVKQFGGGNGA
AVDQTASNSSVNVTQVGFGNNATAHQYEHHHHHH

CsgA ASPAR4 6xHis

GVVPQYGGGGNHGGGGNNSGPNSELNTYQYGGGNSALALQT
DARNSDLTITQHGGGNGADVGQGSDDSSIDLTQRGFGNSAT
LDQWNGKNSSVNVTQVGFGNNATAHQYEHHHHHH

CsgA ASPARS 6xHis

GVVPQYGGGGNHGGGGNNSGPNSELNIYQYGGGNSALALQT
DARNSDLTITQHGGGNGADVGQGSDDSSIDLTQRGFGNSAT
LDQWNGKNSEMTVKQFGGGNGAAVDQTASNEHHHHHH

To extract E. coli genomic DNA, the colony was added to 35 ul QuickExtract DNA Ex-

traction Solution (Lucigen), mixed by vortexing, and transferred to a heat block at 65°C for 6

minutes and 98°C for 2 minutes. Genomic DNA was used to amplify the curli gene sequence

in PCR, without the region coding for the signal peptide. Specific primers with overlaps for

restriction enzymes were used.

The PCR product was purified with QIAquick PCR Purification Kit (Qiagen). For the

construction of protein variants with removed selected regions overlapping PCR and PIPE

methods were used. Primers had a length of approximately 30 nt. All primers that were used in

the reactions are included in Tab. 20| and 21} The PCR products were examined on an agarose

gel, and proper length bands were extracted with GeneJET Gel Extraction Kit (Thermo).
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Table 19: List of studied variants of CsgB proteins.

Variant

Sequence

CsgB WT

AGYDLANSEYNFAVNELSKSSFNQAAIIGQAGTNNSAQLRQGG
SKLLAVVAQEGSSNRAKIDQTGDYNLAYIDQAGSANDASIS
QGAYGNTAMIIQKGSGNKANITQYGTQKTAIVVQRQSQMAI
RVTQREHHHHHH

CsgB ASPARI1 6xHis

AGYDLANSEYNFAVNELSKSSFNLLAVVAQEGSSNRAKIDQTG
DYNLAYIDQAGSANDASISQGAYGNTAMIIQKGSGNKANITQ
YGTQKTAIVVQRQSQMAIRVTQREHHHHHH

CsgB ASPAR2 6xHis

AGYDLANSEYNFAVNELSKSSFNQAAIIGQAGTNNSAQLRQGG
SKNLAYIDQAGSANDASISQGAYGNTAMIIQKGSGNKANITQ
YGTQKTAIVVQRQSQMAIRVTQREHHHHHH

CsgB ASPARS3 6xHis

AGYDLANSEYNFAVNELSKSSFNQAAIIGQAGTNNSAQLRQGG
SKLLAVVAQEGSSNRAKIDQTGDYNTAMIIQKGSGNKANITQ
YGTQKTAIVVQRQSQMAIRVTQREHHHHHH

CsgB ASPAR4 6xHis

AGYDLANSEYNFAVNELSKSSFNQAAIIGQAGTNNSAQLRQGG
SKLLAVVAQEGSSNRAKIDQTGDYNLAYIDQAGSANDASISQ
GAYGKTAIVVQRQSQMAIRVTQREHHHHHH

CsgB ASPARS 6xHis

AGYDLANSEYNFAVNELSKSSFNQAAIIGQAGTNNSAQLRQGG
SKLLAVVAQEGSSNRAKIDQTGDYNLAYIDQAGSANDASISQ
GAYGNTAMIIQKGSGNKANITQYGTQEHHHHHH

The pET24d plasmid was extracted from bacteria possessing it, using GeneJET Plasmid

Miniprep Kit (Thermo). The PCR products and plasmids were cut with restriction enzymes.

Additionally, we used 10x FastDigest Buffer (Thermo). The cut plasmid was validated on an

agarose gel and extracted using GeneJET Gel Extraction Kit (Thermo).
The cut PCR products and plasmids were ligated using T4 DNA Ligase with 10x T4 DNA

Ligase Buffer (Thermo). The plasmids with genes encoding curli proteins were used to trans-

form E. coli BL21 with the heat shock technique. The transformed bacteria were transferred

to an LB-agar plate. After overnight culture, colony PCR was performed. To verify the suc-

cessful transformation, plasmids including the correct insert were extracted with GeneJET Gel

Extraction Kit (Thermo) and sent for Sanger sequencing.
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Table 20: List of primers, constructed by overlap extension method, for amplifi-

cation of selected regions.

Primer name

Primer sequence

csga reg F

ATGGGTGTTGTTCCTCAGTACGG

csga_regl del R

AATAGTCAAGTCAGAATTTGGGCCGCTATTATTACCG

csga regl del F

AATAGCGGCCCAAATTCTGACTTGACTATTACCCAGCA

csga_reg2 del R

CAGATCGATTGAGCTGTTACGGGCATCAGTTTGCA

csga_reg2 del F

ACTGATGCCCGTAACAGCTCAATCGATCTGACCCA

csga_regd del R

AACCGTCATTTCAGAGTCATCTGAGCCCTGACCA

csga_regd del F

CAGGGCTCAGATGACTCTGAAATGACGGTTAAACAGTTCG

csga_regd del R

CACGTTGACGGAGGAATTTTTGCCGTTCCACTGATCA

csga_regd del F

TGGAACGGCAAAAATTCCTCCGTCAACGTGACT

csga_regh del R

GTTAGATGCAGTCTGGTCAACTG

csga_reg R

GTACTGATGAGCGGTCGC

reg F Ncol

CGGCCCATGGGTGTTGTTCCTCAGTACGG

regh del R _Xcol

GCGCTCGAGGTTAGATGCAGTCTGGTCAACTG

reg R Xcol

GCGCTCGAGGTACTGATGAGCGGTCGC
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Table 21:

List of primers, constructed by PIPE method, for amplification of
selected regions.

Primer name

Primer sequence

csgB full F Ncol

CCATGGATGAAAAACAAATTGTTATTTATGATGTTAACAA
TACTGGG

csgB SP N22 r4 R

AATCATCGCAGTATTATTAAATGAAGACTTACTCAATTCATT
TACCGCG

csgBr3 R1 b F

CAAGGTGCTTATGGTCAGGCAGCCATAATTGGTCAAGC

csgBr3 R1 5 R

TACAATTGCCGTTTTTTTTGAGCCTCCCTGCCG

csgBr3 R2rH F

CAAGGTGCTTATGGTCTTTTGGCGGTTGTTGCGC

csgB r3 R2r5 R

TACAATTGCCGTTTTATAATCTCCTGTCTGGTCAATCTTTGCC

csgBr3 R3rH F

CAAGGTGCTTATGGTAACCTTGCATATATTGATCAGGCG

csgB R3 R

ACCATAAGCACCTTGCGAAATAC

csgB R3 13 R

GATCAATATATGCAAGGTTACCATAAGCACCTTGCGAAATAC

csgBr3 R3 15 R

TACAATTGCCGTTTTACCATAAGCACCTTGCGAAATAC

csgB n22 R4 F

AAGTCTTCATTTAATAATACTGCGATGATTATCCAGAAAGG

csgBr3 Ro5rb F

CAAGGTGCTTATGGTAAAACGGCAATTGTAGTGCAGAG

csgB full R his stop
Pstl

CTGCAGTTAGTGGTGGTGGTGGTGGTGACGTTGTGTCACG
CGAATAGC

csgB r3 R5 b R

TACAATTGCCGTTTTACGTTGTGTCACGCGAATAG

csgBrb R5 F CGCGTGACACAACGTAAAACGGCAATTGTAGTGCAGAG
v-PIPE  pET24d AACGTCACCACCACCACCACCACTG

6xHis csgB

v-PIPE  pET24d AGCTAAATCATAACCATGGTATATCTCCTTCTTAAAGTTAAAC
N22 csgB

i-PIPE csgB ATG AGAAGGAGATATACCATGGGTTATGATTTAGCTAATTCAGAAT
N22 pET24d ATAACT

i-PIPE csgB 6xHis
pET24d

GATCTCAGTGGTGGTGGTGGTGGTGACG

6.2.2 Expression and purification of CsgA and CsgB variants using Cobalt Resin
for HDX-MS

It should be emphasized the expression and purification of amyloid proteins is a difficult

task due to their quick aggregation. Therefore, for the expression and purification of these
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proteins, we had to combine and modify protocols developed by |Zhou et al. [2012a], Andreasen
et al.| [2019a] and [Perov et al.| [2019]. E. coli BL21 overnight culture was transferred to 1L TB
medium and incubated in 37°C, with shaking 180 rpm to OD = 0.8-0.9. Protein expression was
induced by adding IPTG to the final concentration of 0.5 mM and incubated for 1.5 h. Cells
were harvested by centrifugation at 4000 g for 25 min in 4°C. The supernatant was discarded.
The 35 ml of the solubilization buffer (8M GdnHCI, 50 mM potassium phosphate buffer [7.3])
was added to the pellet and sonicated for 1 min with power 10. After gentle rocking for 18-24
h at room temperature, the solution was centrifuged at 10000 g for 10 min in 4°C. The pellet
was discarded.

The 1.5 ml of HisPur cobalt resin (Thermo) was added to the supernatant and incubated
for 1 h at room temperature with gentle rocking. The resin was collected by centrifugation for 2
min at 700 g and transferred to a polypropylene column (Qiagen). The cobalt resin was washed
with: 1) 10 ml of cold potassium phosphate buffer [7.3] (CPPB) and 2) 6 BV (bed volumes)
of ice-cold 12.5 uM imidazole in CPPB or 1 BV of ice-cold 125 uM imidazole in CPPB (in the
case of CsgA). The eluted proteins were loaded onto the Amicon 30 kDa concentration tube
and centrifuged to remove aggregation seeds and ribosomal proteins. The example results of
purification can be seen in Fig. and [41] Proteins were precipitated using the chloroform-
methanol method and stored at -80°C.

6.2.3 CsgA expression and purification using Ni-NTA Resin

The E. coli BL21 overnight culture of 30 ml was added to 600 ml of LB medium with 50
mM Kanamycin. Bacterial cultures were incubated in 37°C, with shaking 180 rpm to OD =
0.6-0.7. Protein expression was induced by adding IPTG to the final concentration of 0.5 mM
and incubated for 1 h. Cells were harvested by centrifugation at 6000 g for 20 min in 4°C. The
supernatant was discarded, and the remaining pellet was resuspended in 15 ml 8M GdnHCI and
sonicated on ice for 15 mins, 30 s sonication, 30 s break with the amplitude 40%. The solution
was transferred to a falcon tube and left overnight at room temperature with gentle rocking
and centrifuged at 18000 g for 20 mins at room temperature. The pellet was discarded, and the
supernatant was filtered with the filter paper and 0.45 pum filter.

Ni-NTA resin was equilibrated with 1 BV of 8M GdnHCI, then the sample was added and
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washed with an additional 1 BV of 8M GdnHCI. The resin was washed with: 1) 10 ml of cold
potassium phosphate buffer [7.3] (CPPB), 2) 2 BV of ice-cold 12.5 mM imidazole in CPPB and
3) 2 BV of ice-cold 300 mM imidazole in CPPB. Samples were run through Amicon 30 kDa
cutoff buffer and concentrated on the Amicon 10 kDa column in 4°C. The sample was desalted

with Zeba Spin Desalting Columns on LC.

6.2.4 Thioflavin T assay

ThT was dissolved in 50 mM phosphate buffer with pH = 7.3 to a final concentration of 20
uM. Protein samples purified with Ni-NTA resin were diluted in the buffer mentioned above to
the concentration of 0.625, 1.25, 2.5, 5, and 10 uM if it was possible. Each sample, together with
the Th'T control, was transferred to a 96-well plate in triplicates. Protein samples purified with
Cobalt resin and dehydrated were resuspended in 8M GdnHCI buffer, sonicated, run through a
30 kDa cutoff concentrator, and desalted with desalting columns. The concentration of samples
was set to approximately 4 puM. Fluorescence was measured in CLARIOstar Plus Microplate

Reader at room temperature in 10 min intervals and 30s of shaking before measurements.

6.2.5 Atomic Force Microscopy

AFM measurements were performed as previously mentioned. Each protein sample was
dissolved to the concentration of 2 uM. The protein solution was applied on the mica for 5
min, gently washed with 2 ml MiliQQ water, and dried to change the polarity of the surface for
the easier binding of negatively-charged CsgA proteins. The mica was pretreated with APTES.
AFM images were processed using Gwyddion software |[Necas and Klapetek, 2012].

6.3 Results

Despite many attempts, producing and purifying enough amounts of CsgB protein and its
variants have failed. We were able to identify our product after a small-scale production in only
wild type variant, both on the SDS page gel and Western Blot (Fig. and . We also tried
to produce all six variants of CsgB in a greater amount but after purification through Cobalt

resin, we were not able to find any product both on the SDS page and Western Blot. It means
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that the proteins either stayed on the column with resin or were eluted much earlier. In the
case of CsgA, we had no such problems. The wild type during small-scale production can be
seen in Fig. 39 and [40]

Therefore, further analyses were carried out on variants of the CsgA protein. The planned
protein analyses using HDX-MS did not take place, due to the fact that the precipitation,

freezing, and resuspension of the protein purified by Cobalt resin, showed deviating results of

reaction kinetics.
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Figure 39: Expression and purification of CsgA. Results of CsgA (ca. 15 kDa) purification.
1) Flow through 1 ml/10 ml, 2) Flow through 10ml/10ml, 3) CsgA after the first elution, 4) CsgA
from the first elution after Amicon 30 kDa concentration filter, 5) Proteins from the first elution
that remained on the filter, 6) CsgA after the second elution, 7) CsgA from the second elution after

Amicon 30 kDa concentration filter, 8) Proteins from the second elution that remained on the filter.
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Figure 40: Western Blot of CsgA eluates. The samples were eluted with the buffer containing
100 and 125 mM imidazole. The CsgA bands are at the height of ~15 kDa. X indicates a poorly

formed well.

Figure 41: Expression and purification of CsgB. Results of CsgB (ca. 15 kDa) purification. 1)
Flow through 1 ml/10 ml, 2) Flow through 10ml/10ml, 3) CsgB after the first elution, 4) CsgB from
the first elution after Amicon 30 kDa concentration filter, 5) CsgB after the third elution.
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Figure 42: Western Blot of CsgB eluates. The samples were eluted with the buffer containing
125 mM imidazole. 1 and 4) samples from the first elution, 2 and 3) samples after concentration with

Amicon 30 kDa concentration filter, 5) control with only buffer.
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6.3.1 ThT assay
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Figure 43: ThT assay of CsgA variants purified with Cobalt resin. Samples were run on two
different plate readers marked by 1 and 2. The concentration of each sample was approximately 4

M.

Proteins that were prepared for HDX-MS and dissolved in 8M GdnHCI show a similar
aggregation curve (Fig. . It is likely that the proteins, despite precipitation and storage
at -80 °C have aggregated. Dissolving them and then sonicating have broken down existing
amyloid fibrils, but this did not result in changes in aggregation kinetics. CsgA proteins, with
the exception of the ARbH variant, showed a similar increase in fluorescence at the same time
(Fig. . In contrast, the AR5 variant showed a temporary increase in fluorescence levels,
followed by a sudden decrease. Variants AR1 and AR2 demonstrated the highest fluorescence
values, whereas AR3 and AR4 smaller. WT CsgA presented rather intermediate values between

them.
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Figure 44: ThT assay of AR1, AR4, and AR5 CsgA variants purified with Ni-NTA resin.
All proteins have concentrations of 0.625, 1.25, 2.5, 5, and 10 uM.

Other aggregation kinetics analyses of the AR1, AR4, and AR5 variants of the CsgA protein
purified with the Ni-NTA deposit and tested immediately after purification were shown in (Fig.
. Similar to the previous experiment, the AR1 variant occurred in the most aggregating
form, which may indicate that the R1 region of the CsgA protein can probably control the
speed of the aggregation process. The AR4 and AR5 variants of the protein showed no clear
increase in fluorescence intensity, which may indicate that they need much more time to start
the process. The presented results also clearly show that the higher the protein concentration,

the aggregation process starts faster and causes a higher fluorescence.
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Figure 45: ThT assay of AR1 and AR5 CsgA variants purified with Ni-NTA resin. All
proteins have concentrations of 0.625, 1.25, 2.5, 5 and 10 uM.

Re-examination of the kinetics of AR1 and AR5 variants (Fig. confirmed the earlier
findings. Variant AR5 needs significantly more time to start the aggregation process than
variant AR1. The longer incubation needed for aggregation confirms the observations of the
previous analysis, that the R5 region is much more important in this process than R1 despite

the fact that both are necessary in the formation of amyloid fibrils of the CsgA protein.
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Figure 46: ThT assay of WT, AR2 and AR3 CsgA variants purified with Ni-NTA resin.
All proteins have concentrations of 0.625, 1.25, 2.5, 5 and 10 uM.

Additional analyses of CsgA variants can be seen in Fig. [46] We can notice that the AR3
variant aggregates faster than the AR2 variant and WT. This may indicate that the R3 region of
CsgA may be responsible for controlling the aggregation process or has no effect on aggregation.

In contrast, the WT and AR2 variants of the CsgA protein need more time to aggregate.
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Figure 47: ThT assay of WT and AR2 CsgA variants purified with Ni-NTA resin. CsgA
WT protein has concentrations of 0.625, 1.25, 2.5 uM and CsgA R2 0.625, 1.25, 2.5, 5 uM.

A re-analysis of the WT and AR2 variants (Fig. confirms our previous observations.
Yet, we were not able to obtain similar concentrations during purification. Nevertheless, the
AR2 variant aggregated faster than in the previous analysis, which may indicate problems
with the correct purification of the protein in the previous experiment. The WT variant was
characterized by a longer lag phase to start the aggregation process than AR2 and showed a
lower fluorescence, which may be related with the later start of the process.

To summarize, the kinetic studies showed that the AR1 variant appeared the most aggre-
gating. It may be associated with the regulatory role of R1 region in the aggregation of CsgA
protein. This region can decrease the speed of this process. On the other hand the AR4 variant
occurred not as much reactive in aggregation as others, which may suggest that this region is

more important in the aggregation. The AR5 is also poorly aggregated and need more time in
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this process. It indicates that this region has also a decisive influence on the aggregation rate.

6.3.2 Atomic Force Microscopy

Figure 48: CsgA WT variant after resuspension under AFM.

[T 100 nm

Figure 49: CsgA ARI1 variant after resuspension under AFM.
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Figure 50: CsgA ARZ2 variant after resuspension under AFM.

Figure 51: CsgA ARS3 variant after resuspension under AFM.
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Figure 52: CsgA ARA4 variant after resuspension under AFM.

Figure 53: CsgA ARS5 variant after resuspension under AFM.

Using AFM, we attempted to find amyloid fibrils of individual CsgA protein variants that
were purified with cobalt resin resuspended (Fig. 53)). Unfortunately, we did not find any
amyloid fibrils. Instead, as shown in Fig. [48] 9] and [52] we observed some kind of oligomeric
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aggregates. The amount of them in AR4 variants might indicate that there are problems with
starting aggregation ass our previous observation. There is a lot of building material, but fibrils

do not form. Fig. might present fibrils, but they are quite small.

Figure 55: CsgA R4 variant after 1 week of incubation.
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Figure 56: CsgA R4 fibrils after 1 week of incubation.

However, in the case of protein variants purified by Ni-NTA, we were able to find some kind
of fibrils in the AR1 and AR4 variants, although the fibrils are very small, which is unusual.
In Fig. and [55] one can see clusters of fibrils but also numerous forms, which are probably
oligomeric in the form of larger dots. In Fig. a single fibril is visible, which is much shorter
than amyloid fibrils in the other figures.
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7 Comparison of sequence features between functional and

non-functional amyloids

7.1 Research objectives

After the detailed analyses of functional amyloids, CsgA and CsgB, we decided to identify
specific sequence characters that could distinguish functional amyloids in general from non-
functional ones. Distinguishing these classes of amyloids can be crucial in verifying whether
the dysfunctional protein plays a role in an organism or is the result of incorrect folding. So
far, computational approaches for the detection of functional amyloids were not elaborated.
Therefore, we compared functional and non-functional amyloids to select features that could be

used in the elaboration of a robust model to distinguish these sequences.

7.2 Materials and Methods

7.2.1 Dataset preparation

We collected functional and non-functional amyloids based on literature and UniProt database
[UniProt Consortium), [2018] searches. These proteins were gathered in Tab. [1} and their se-
quences were downloaded from the UniProt database.

For each protein, we run BLASTP [Camacho et al., [2009] to find homologous sequences in
the UniProt database. In the search, we used default values: matrix auto, filter none, gapped
yes, hits 1000, HSPs per hit All. The scoring matrix was automatically selected according to
the sequence length and is presented in Tab. 22] From each protein, we have chosen up to top
500 significant homologs with very low E-values, 1le-50 and le-15, depending on a protein (Tab.
7).

The initial datasets contained 1789 functional and 5963 non-functional amyloid sequences.
We rejected sequences shorter than six amino acids and used CD-HIT [Fu et al., 2012, assuming
a 0.7 threshold and word size 2, to cluster them and remove similar sequences. It resulted in
1214 functional and 941 non-functional amyloids. The functional amyloids were considered as

a positive set and the non-functional ones as a negative set in classification approaches.
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Table 22: List of proteins with their UniProt id used in the designing predictor of
functional amyloids. Matrix and E-value threshold used in the selection of their homologs
were also included.

Protein name UniProt id Matrix E-value
AIMP2 Q13155 BLOSUM62 1e-50
Albumin P02768 BLOSUM62 1e-50
a-crystallin P24623 BLOSUM62 1e-50
a-lactalbumin P00714 BLOSUMG62 1e-50
a-S2-casein P02663 BLOSUM62  1e-50
a-synuclein P37377 BLOSUMG62 1e-50
Amyloid 3 P05067 BLOSUM62 1e-50
Apolipoprotein A-I P02647 BLOSUM62 1e-50
Apolipoprotein E P02649 BLOSUMG62 1e-50
[-casein P05814 BLOSUM62 1e-50
[B-crystallin P53674 BLOSUMG62 1e-50
B-lactoglobulin P02754 BLOSUMG62 1e-50
[B-parvalbumin P20472 BLOSUM62 1e-50
(B2-microglobulin P61769 BLOSUMG62 1e-50
Bri2 QIY287 BLOSUM62 1e-50
CRES 060676 BLOSUM62 1e-50
CsgA P28307 BLOSUM62 1e-50
CsgB POABK7 BLOSUM62 1e-50
Cystatin C P21460 BLOSUM62 1e-50
Cytochrome C P00427 BLOSUM62 1e-50
Delta-toxin POC1V1 BLOSUM62 1e-50
DJ-1 QIVA37 BLOSUM62 1e-50
FapC C4IN70 BLOSUM62 1e-20
Fibroin P21828 BLOSUM62 1e-50
FUS P35637 BLOSUM62 1e-50
~-crystallin P07315 BLOSUM62 1e-50
GroES POA6F9 BLOSUM62 1e-50
HET-s Q03689 BLOSUM62 1e-50
IAPP P10997 BLOSUM62 1e-50
Insulin P01308 BLOSUM62 1e-50
Kappa-casein P07498 BLOSUM62 1e-50

Lysozyme P61626 BLOSUMG62 1e-50
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Table 22: List of proteins with their UniProt id used in the designing predictor of
functional amyloids. (Continued). Matrix and E-value threshold used in the selection
of their homologs were also included.

Protein name UniProt id  Matrix E-value
Medin (AMed) Q08431 PAMT0 le-50
Myoglobin P02144 BLOSUM62 1e-50
Newl (NU+) Q08972 BLOSUM62 1le-50
pb3 P04637 BLOSUM62 1e-50
p73 015350 BLOSUM62 1e-50
Pmell7 P40967 BLOSUM62 1le-50
Polyglutamine (polyQ) 060828 BLOSUM62 1e-50
proSP-C P11686 BLOSUM62 1e-50
PrP P04156 BLOSUM62 1e-50
PSMal A9JX05 PAM30 le-50
PSMa2 A9JX06 PAM30 le-50
PSMa3 A9JX07 PAM30 le-50
PSMao4 A9JX08 PAM30 le-50
PSMpg1 AOAO68FPX1 PAMTO0 le-15
PSMp2 AOAO68FLK9 PAMT70 le-15
Rnql P25367 BLOSUM62 1le-50
S100A9 P06702 BLOSUM62 1e-50
Sericin P07856 BLOSUM62 1e-50
Serum amyloid A PODJI8 BLOSUMG62 1e-50
Sup35 P05453 BLOSUM62 1e-50
Tau P10636 BLOSUM62 1le-50
TDP-43 Q13148 BLOSUM62 1e-50
Transthyretin P02766 BLOSUM62 1e-50
Tubulin PODPH7 BLOSUM62 1le-50

7.2.2 Sequence descriptors

For each sequence, we calculated several descriptors (features), i.e. various numerical repre-
sentation schemes: amino acid composition (AAC), dipeptide composition (DC), AAindex, Nor-
malized Moreau-Broto Autocorrelation (MoreauBroto), Moran Autocorrelation (Moran), Geary
Autocorrelation (Geary), Composition (CTDC), Transition (CTDT), Distribution (CTDD),
Conjoint Triad (CTriad), Sequence-Order-Coupling Number (SOCN), Quasi-Sequence-Order
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Descriptors (QSO), Pseudo-Amino Acid Composition (PAAC) and Amphiphilic Pseudo-Amino
Acid Composition (APAAC).

AAindex is set of numerical indices representing various physicochemical and biochemical
properties of amino acids [Kawashima et al., |2008|. Autocorrelation descriptors (MoreauBroto,
Moran and Geary) are defined based on the distribution of amino acid properties along the
sequence using various types of amino acid indices. CTDC, CTDT and CTDD use amino
acids grouped into classes based on hydrophobicity, normalized van der Waals volume, polarity
and polarizability. They calculate their composition, transition and distribution in a sequence.
CTriad was applied to model protein-protein interactions based on the classification of amino
acids |Shen et al., 2007]. In this case, each protein sequence is represented by a vector space
consisting of descriptors of amino acids, which are clustered into several classes according to their
dipoles and volumes of the side chains. SOCN and QSO were derived from the distance matrices
between amino acids, i.e. Schneider-Wrede physicochemical distance matrix [Schneider and
Wrede, 1994] and Grantham chemical distance matrix |[Grantham)| 1974]. PAAC and APAAC
use the original hydrophobicity values, the original hydrophilicity values and the original side
chain masses of amino acids.

Since many indices from AAlIndex database can be redundant, we removed the highly corre-
lated indices for discriminant and prediction analyses assuming the correlation coefficient thresh-
old 0.8 and the variance inflation factor (VIF) as the criterion for excluding variables among
those that are correlated. Thereby, the number of the indices was reduced from 544 to 74. In the
calculation of descriptors MoreauBroto, Moran and Geary, we assumed the following properties:
CIDH920105 (Normalized Average Hydrophobicity Scales), BHAR880101 (Average Flexibility
Indices), CHAMS820101 (Polarizability Parameter), CHAMS820102 (Free Energy of Solution in
Water), CHOC760101 (Residue Accessible Surface Area in Tripeptide), BIGC670101 (Residue
Volume) and CHAMS810101 (Steric Parameter). Moreover, we applied the value of 15 for the
maximum lag in the case of descriptors MoreauBroto, Moran, Geary, SOCN and QSO as well as
for the lambda in PAAC and APAAC. These descriptors include relations between properties of

amino acids located in various distances (defined by the lag and lambda) in a studied sequence.



7.2 Materials and Methods 119

7.2.3 Statistical and prediction analyses

Differences between the functional and non-functional amyloids in selected features were
compared in the non-parametric unpaired Wilcoxon test. We applied the Bonferroni method
to correct the p-value due to multiple testing. P-values smaller than 0.05 were regarded as
statistically significant. Due to the multidimensionality of data, the data set was studied and
visualized in Correspondence Analysis (CA) and Principal Component Analysis (PCA), where
the variables were scaled to the unit variance. Moreover, we applied Linear Discriminant Anal-
ysis (LDA) to find a linear combination of features that characterizes and separates the studied
protein sequences. Before conducting LDA, we removed highly correlated variables with a corre-
lation coefficient > |0.8| and the highest VIF. Moreover, we normalized the variables by applying
the best normalizing transformations on the basis of the Pearson P test statistic for normality.

For selected descriptors based on the LDA results, we build a random forest classification
model to classify these two types of proteins. We conducted 100 runs of the model splitting
randomly the data into a training set and a test set in the ratio of 3:1. For each iteration,
we individually searched for the optimal value (with respect to Out-of-Bag error estimate) of
mtry, i.e. the number of variables randomly sampled as candidates at each split. We assumed
the number of trees to grow for 1000. The model was learned on the training set with 5-fold
cross-validation. Finally, the tested set was predicted using the trained model.

Based on the 100 iterations, the mean, the minimum and the maximum of the following
measures were calculated, both for the cross-validation and predicting step: precision (PRE),
sensitivity (SEN), specificity (SPE), accuracy (ACC), Matthews correlation coefficient (MCC)
and AUC (area under the receiver operating characteristic curve).

The parameters are expressed by the formulas:

TP
PRE= ———
R (TP + FP)
TP
EN=———
S (TP + FN)
spp — — 1N

(TN + FP)
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TP+TN

ACC =
(TP+ FP+TN + FN)

TP+«TN —FPxFN

MCC =
V(TP +FN) (TN + FP) % (TP + FP)* (TN + FN)

where TP is the number of true positives, FP is the number of false positives, TN is the
number of true negatives and FN is the number of false negatives.

Sensitivity is also called recall or true positive rate (TPR), whereas specificity is also named
true negative rate (TNR). AUC corresponds to the area under the receiver operating charac-
teristic curve depicted in a plot of the sensitivity against the false positive rate (FPR), i.e. (1
—specificity) at various threshold settings. AUC is a statistics that is used in the comparison
of different models. MCC is generally regarded as a balanced measure that can be used even if
the classes are of very different sizes and is used to measure the quality of classifications. MCC
takes values from -1 to 1, whereas the other measures from 0 to 1. The higher the values, the
better the model distinguishes the analyzed groups.

The analyses were conducted in R software [RStudio Team) 2020| using various packages:
stats, bestNormalize [Peterson, 2021], bio3d |Grant et al., 2021, fuzzySim [Barbosa, 2015|,
FactoMineR [Lé et al. 2008|, MASS [Venables and Ripley, 2002|, protr [Xiao et al., 2015|,
randomForest |Cutler and Wiener|, 2022| and seqinr [Charif et al., [2022].

7.3 Results
7.3.1 Statistical analyses

Easily interpretable descriptors such as amino acid composition (AAC), dipeptide composi-
tion (DC) and AAindex were subjected to statistical testing. The functional and non-functional
amyloids differ significantly in the composition of 17 amino acid residues: R, M, K, T, H, S, C,
Y,L,Q, P, E,F, W, D, Nand V. The functional amyloid sequences are characterized by a higher
content of small hydroxylated residues, threonine and serine (Fig. . Considering mean values
for the whole set, the frequency of T and S was 2 and 2.5 times higher in functional amyloids.
In turn, non-functional amyloids show 1.5 to almost 1.8 times increase in basic lysine, arginine
and histidine, aromatic tryptophan and tyrosine as well as sulphur-containing methionine and

cysteine.
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Figure 57: Box-plots of amino acid composition in functional amyloids (FA) and non-
functional amyloids (NFA). The thick line indicates the median, the box shows the quartile range

and the whiskers denote the range without outliers.
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CA (Correspondence Analysis) and PCA (Principal Component Analysis) quite well sepa-
rate the compared amyloid proteins (Fig. . In the plots for two principal coordinates or
components explaining the largest fraction of variance, we can notice two main sets separated
by the first coordinate. A bigger set contains exclusively functional amyloids and the second
comprises both types of proteins. There is also a small group isolated by the second principal
component. In the case of CA, this group includes only non-functional amyloids but in PCA,
the representatives of both amyloid proteins are present. In the results of CA (Tab. , the
largest weights in the separation revealed serine, alanine, glycine and threonine. In PCA, the
most positively correlated variables with the first component are leucine, methionine, pheny-
lalanine, lysine, arginine, tyrosine, tryptophan and cysteine, whereas high negative correlation
coefficients show serine and threonine. Considering the second component, the highest positive

correlation is demonstrated by glycine and negative by valine.

CA
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Figure 58: Correspondence Analysis (CA) and Principal Component Analysis (PCA) of
functional amyloids (FA) and non-functional amyloids (NFA) for amino acid composi-

tion.
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Table 23: Weights from Correspondence Analysis and correlation coefficients with
two components (CC1l and CC2) from Principal Component Analysis for the
amino acid composition of functional amyloids and non-functional amyloids.

Amino acid Weights CC1 CC2

A 0.082 -0.19  -0.47
C 0.018 0.52  0.16
D 0.050 0.13 -0.17
E 0.057 0.43 -0.35
F 0.029 0.63 0.05
G 0.080 -0.33  0.52
H 0.019 0.42 0.34
I 0.039 0.44 -0.28
K 0.046 0.60 -0.29
L 0.073 0.76  -0.24
M 0.018 0.68 0.05
N 0.042 -0.08 0.30
P 0.052 0.22  -0.02
Q 0.041 0.31 0.41
R 0.043 0.59 0.29
S 0.134 -0.83 0.13
T 0.079 -0.63 -0.18
\Y 0.061 0.36 -0.54
W 0.011 0.52 0.21
Y 0.026 0.53 048

In the case of dipeptide content, 215 out of 400 parameters occurred statistically significant
between the compared protein sequences. The functional amyloids are characterized on average
by a high increase in dipeptides containing serine and threonine but also VW dipeptide, whereas
non-functional amyloids by dipeptides, which are rich in cysteine, aspartic acid, methionine,

arginine and histidine (Tab. [24)).
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Table 24: Selected dipeptides whose mean frequency was at least 2.5 times higher
in a given amyloid group and the difference was statistically significant.

Dipeptide Ratio of means Group

WV 3.7 non-functional amyloids
PM 3.5 non-functional amyloids
CA 3.4 non-functional amyloids
RG 3.2 non-functional amyloids
FH 3.1 non-functional amyloids
MD 3.1 non-functional amyloids
FQ 3.0 non-functional amyloids
RC 2.9 non-functional amyloids
WC 2.9 non-functional amyloids
ER 2.9 non-functional amyloids
IC 2.9 non-functional amyloids
CK 2.7 non-functional amyloids
HP 2.7 non-functional amyloids
MC 2.7 non-functional amyloids
DM 2.7 non-functional amyloids
KH 2.7 non-functional amyloids
DY 2.6 non-functional amyloids
YE 2.6 non-functional amyloids
DR 2.5 non-functional amyloids
SS 5.8 functional amyloids
TT 5.8 functional amyloids
ST 5.6 functional amyloids
TS 5.2 functional amyloids
SG 3.1 functional amyloids
SA 3.0 functional amyloids
AS 3.0 functional amyloids
DS 2.9 functional amyloids
GS 2.9 functional amyloids
TG 2.9 functional amyloids
SN 2.7 functional amyloids
VW 2.5 functional amyloids

CA and PCA plots for the dipeptide composition also clearly distinguish many functional
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amyloids but some of them are still grouped with non-functional ones according to the first
principal component (Fig. . In PCA, we can also notice the differentiation of non-functional
amyloids according to the second component. In Tab. we selected dipeptides showing the
highest weights and/or correlations with two components. Most often, they are combinations

of serine, leucine, glycine, alanine, and threonine.

CA PCA

OFA OFA
O NFA O NFA

o

Dim2 (4.47%)
Dim2 (2.86%)

I
N

<

-5
Dim1 (9.53%) Dim1 (5.78%)

-2 -1

Figure 59: Correspondence Analysis (CA) and Principal Component Analysis (PCA) of

functional amyloids (FA) and non-functional amyloids (NFA) for dipeptide composition.
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Table 25: Weights from Correspondence Analysis and correlation coefficients with
two components (CC1 and CC2) from Principal Component Analysis for selected
dipeptides of functional and non-functional amyloids.

Dipeptide Weights CC1 CC2

AA 0.010 -0.17  -0.13
AS 0.010 -0.48 -0.05
AW 0.001 024 0.51
CN 0.001 0.19 0.55
EL 0.004 0.53 -0.15
FL 0.003 0.45 0.06
GC 0.001 0.23 0.54
GG 0.009 -0.24 0.18
GS 0.014 -0.53 0.15
LE 0.004 0.49 -0.26
LK 0.004 0.46 -0.20
LL 0.008 0.54 0.05
LS 0.007 0.00 -0.05
SA 0.010 -0.46 -0.04
SG 0.013 -0.48 0.17
SS 0.033 -0.57  0.05
ST 0.016 -0.60 -0.03
TG 0.006 -0.41 -0.01
TS 0.013 -0.56 -0.06
TT 0.011 -0.44 -0.07

AAindex measures also occurred to differentiate the studied amyloids (Tab. [26). The most
distinguishing indices cover various physicochemical properties including secondary structure.
Among them, there are weights for [-sheet and coil structures, optimized relative partition
energies, information measure for loop and turn, as well as scales for hydrophobicity, polarity
and net charge. Functional amyloids showed larger mean values for optimized relative partition
energies as well as indices for [-sheet, turn and loop, whereas non-functional amyloids for
hydrophobicity, net charge and weights for coil region. Due to reverse scaling, high values in

RADAS880108 index mean that a given amino acid is in fact hydrophobic.
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Table 26: Selected amino acid indices that showed the largest percentage dif-
ference between mean values calculated for functional amyloids (FA) and non-
functional amyloids (NFA) and significantly differentiate these groups.

A Alndex Description Mean Mean
for NFA for FA
QIAN880116  Weights for -sheet at the window position of -4 -0.0575 0.0005
BAEKO050101  Linker index -0.0003 -0.0244
ROBB760108 Information measure for turn -0.3310 0.0063
KLEP840101  Net charge -0.0007 -0.0308
QIANS80125  Weights for S-sheet at the window position of 5 -0.0019 0.0779
MIYS990104 Optimized relative partition energies - method C -0.0208 0.0007
QIAN8R0114  Weights for S-sheet at the window position of -6 -0.0024 0.0720
ROBB760109 Information measure for N-terminal turn -0.0072 0.1283
CIDH920103  Normalized hydrophobicity scales for a-+(-proteins -0.0082 -0.1598
MIYS990105 Optimized relative partition energies - method D -0.0178 0.0012
QIANS80139  Weights for coil at the window position of 6 0.0572 0.0040
MIYS990103 Optimized relative partition energies - method B -0.0186 -0.0016
NAKH900106 Normalized composition from animal -0.0057 0.0550
COWR900101 Hydrophobicity index, 3.0 pH 0.0771 0.0073
QIANS80126 ~ Weights for S-sheet at the window position of 6 0.0135 0.1027
RADAS880108 Mean polarity 0.0137 -0.0696
ROBB760113  Information measure for loop -0.3106 0.0723
CIDH920101 Normalized hydrophobicity scales for a-proteins -0.0385 -0.2386
QIANS80138  Weights for coil at the window position of 5 0.0419 -0.0107
QIANS80137  Weights for coil at the window position of 4 -0.0072 -0.0416

PCA performed for amino acid indices also separated two groups, although the distance
between them is smaller than in the case of amino acid and dipeptide compositions (Fig. [60)).
Most functional amyloids are in one group, but others overlap non-functional ones. In contrast
to the plots for the compositions, the two groups have comparable ranges in the plot. Amino acid
indices the most correlated with the principal components are associated with various features
related for example to secondary structures, especially for -sheets, hydrophobicity, buriability

and protein stability (Tab. [27)).
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Figure 60: Principal Component Analysis of functional amyloids (FA) and non-functional

amyloids (NFA) for selected amino acid indices.
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Table 27: Correlation coefficients with two components (CC1 and CC2) from
Principal Component Analysis for selected amino acid indices calculated for func-
tional and non-functional amyloids.

A Alndex CC1 CC2 Description
BASU050101 0.98 0.16 Interactivity scale obtained from the contact matrix

BASU050102  0.98 0.07 Interactivity scale obtained by maximizing the mean of cor-
relation coefficient over single-domain globular proteins

CHOP780203 -0.97 -0.05 Normalized frequency of S-turn

CHOP780211 -0.97 0.12 Normalized frequency of C-terminal non [ region
CIDH920102  0.97 -0.02 Normalized hydrophobicity scales for S-proteins
CIDH920105  0.97 0.06 Normalized average hydrophobicity scales
DESM900102 0.12 0.96  Average membrane preference: AMP07
GEIM800111  -0.98 0.04 Aperiodic indices for a//3-proteins

GUODS860101 0.97 0.12 Retention coefficient at pH 2

MEIH800101  -0.97 -0.14 Average reduced distance for C-«

MIYS990101  -0.97 -0.16 Relative partition energies derived by the Bethe approxi-
mation

OOBM770101 -0.09 -0.95 Average non-bonded energy per atom

PARJ860101  -0.97 -0.11 HPLC parameter

PLIV810101 0.97 0.08 Partition coefficient

RACS770101  -0.98 -0.01 Average reduced distance for C-«

SUEM840101  0.97 -0.13 Zimm-Bragg parameter s at 20 C

TAKKO010101  0.97 -0.04 Side-chain contribution to protein stability (kJ/mol)

VINM940102  -0.97 -0.04 Normalized flexibility parameters (B-values) for each
residue surrounded by none rigid neighbours

ZHOHO040101 0.97 -0.05 The stability scale from the knowledge-based atom-atom
potential

ZHOHO040103 0.97 0.15  Buriability

7.3.2 Discriminant analysis

The application of LDA (Linear Discriminant Analysis) showed a variable accuracy of clas-
sification depending on the used descriptors (Tab. [28). SOCN was excluded from the study
because all variables occurred too highly correlated. The accuracy was the smallest for More-

auBroto (0.69) and basic composition descriptors, i.e. CTDC, CTDT and AAC (0.70 to 0.80).
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The best discriminator appeared dipeptide composition (DC) with an accuracy of almost 0.99.

At the top, there were also CTriad, AAindex and APAAC (0.96 — 0.90).

Table 28: Accuracy obtained in Linear Discriminant for various protein sequence
descriptors for functional and non-functional amyloids. The numbers of initial
variables and those after the exclusion of the most correlated were also presented.

Descriptor Initial number of pa- Number of parameters Accuracy
rameters without correlated
DC 400 396 0.986
CTriad 343 342 0.958
AAindex 544 74 0.898
APAAC 50 49 0.890
QSO 70 48 0.872
Moran 105 75 0.850
Geary 105 75 0.850
PAAC 35 21 0.846
CTDD 105 69 0.844
AAC 20 20 0.805
CTDT 21 14 0.735
CTDC 21 8 0.705
MoreauBroto 105 6 0.693

AAC - amino acid composition, APAAC - Amphiphilic Pseudo-Amino Acid Composition, CTDC -

Composition, CTDD - Distribution, CTDT - Transition, CTriad - Conjoint Triad, DC - dipeptide composition,
Geary - Geary Autocorrelation, Moran - Moran Autocorrelation, MoreauBroto - Normalized Moreau-Broto

Autocorrelation, PAAC - Pseudo-Amino Acid Composition, QSO - Quasi-Sequence-Order Descriptors

LDA identified only one discriminant function for each of the descriptors. Histograms for

this function and selected descriptors are presented in Fig. [6I} In terms of amino acid com-

position, shown for comparison, the functional and non-functional amyloids are rather poorly

separated and characterized by a large overlap in the distribution of function values. Much bet-

ter separation is visible for amino acid indices, whereas the best one for CTriad and dipeptide

composition. In the case of dipeptide composition, the most positively correlated (0.17 to 0.12)
with the discriminant function occurred dipeptides ST, TT, AS, SA SS, AT, NG, TG, and NT,
whereas the most negatively correlated (-0.16 to -0.12) RG, FQ, ER, AK, DY, CA, KV, LK,

and MD. The correlation coefficients of amino acid indices with the discriminant function are
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larger in terms of absolute value (Tab. 29). Among these indices, there are those related to the
free energy of protein conformation as well as secondary structures: [-sheet, coil regions, and

helix.

Figure 61: Histograms for discriminant function and selected descriptors calculated for

functional and non-functional amyloids.
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Table 29: Correlation coefficient (CC) with discriminant function for selected
amino acid indices calculated for functional and non-functional amyloids.

A Alndex CC Description
WERD780102 -0.470 Free energy change of epsilon(i) to epsilon(ex)

CHAMS30102 -0.441 A parameter defined from the residuals obtained from
the best correlation of the Chou-Fasman parameter of
[-sheet

NAKH900103 -0.412 AA composition of mt-proteins

WERD780103 -0.386 Free energy change of a(Ri) to a(Rh)
TANS770108  -0.306 Normalized frequency of zeta R

LAWES840101 0.302  Transfer free energy, CHP /water

ROSMS880103  0.308  Loss of Side chain hydropathy by helix formation
QIANS880137  0.382  Weights for coil at the window position of 4
RICJ880116 0.421 Relative preference value at C’

CHAMS30108 0.452 A parameter of charge transfer donor capability

To summarize, the results of the statistical and discriminant analyses indicate that func-
tional and non-functional amyloids show many sequence features that can differentiate them.
However, CA and PCA plots demonstrated that the functional amyloids are clearly a hetero-
geneous group, which can be separated into two sets. The non-functional amyloids are not
fully homogenous, either, and some smaller subgroups can be recognized. Nevertheless, there
are distinctive features that discriminate these sets. Taking together of the results, we can say
that functional amyloids are characterized by a high content of amino acids S and T, as well as
dipeptides ST, TS, TT, SS, AS, SA, SG, TG, AT, GS, SN, GT and DS. In turn, non-functional
amyloids are rich in R, K, M, L, C, H and Y as well as LK, AK, KV, LL, RV, FQ, ER, KE, EL,
EK, VR, LR and DL. Larger values of amino acid indices for functional amyloids are associated
mainly with loop, turn, flexibility, [-sheet, S-turn, § region, optimized relative partition en-
ergies, whereas those for non-functional amyloids with buriability, hydrophobicity, net charge,

protein stability and free energy change.
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7.3.3 Prediction analyses using random forest

Based on the LDA results, we selected the most promising descriptions to verify their use-
fulness in a random forest model. To this study, we selected three top descriptors, i.e. DC,
CTriad and AAindex as well as APAAC, which was characterized by the smallest number of
parameters.

To assess how accurately the predictive model can perform in practice, we conducted five-
fold cross-validation by dividing functional amyloid and non-amyloid training data sets into five
groups, four training and one tested. This assessment is presented in Tab. [30] Generally, the
values of all the applied measures were higher than 0.8 and mostly 0.9. Dipeptide composition
occurred as the best predicting feature in terms of precision (mean 0.983), specificity (mean
0.979) and AUC (mean 0.996), whereas AAIndex for sensitivity (mean 0.961), accuracy (mean
0.962) and MCC (mean 0.922). CTriad and APAAC descriptions appeared weaker.

Table 30: Cross-validation results for random forest model based on selected de-
scriptors in the prediction of functional and non-functional amyloids. The highest
value for a given measure was bolded. The mean as well as the minimum and the maximum
values in parentheses calculated for 100 runs were also presented.

Measure DC A Alndex CTriad APAAC

Precision  0.983 [0.976-0.988] 0.970 [0.962-0.978| 0.979 [0.972-0.987| 0.968 [0.957-0.977]
Sensitivity 0.945 [0.926-0.963] 0.961 [0.955-0.969] 0.887 [0.862-0.907] 0.938 [0.930-0.947]
Specificity  0.979 [0.970-0.986] 0.962 [0.950-0.972] 0.975 [0.965-0.985]  0.960 [0.947-0.972]
Accuracy  0.960 [0.949-0.970] 0.962 [0.956-0.968] 0.926 [0.909-0.934] 0.948 [0.939-0.953]
AUC 0.996 [0.994-0.997] 0.992 [0.991-0.994] 0.988 [0.986-0.991] 0.990 [0.987-0.991]
MCC 0.920 [0.898-0.939| 0.922 [0.911-0.936] 0.856 [0.825-0.870] 0.894 [0.878-0.905]

APAAC - Amphiphilic Pseudo-Amino Acid Composition, CTriad - Conjoint Triad, DC - dipeptide composition

Next, we tested the model based on an independent set. The predictions turned out very
good (Tab. . The measures varied from 0.796 to 0.996. Dipeptide composition and amino
acid indices outperformed other descriptors. DC achieved the highest mean sensitivity (0.980)
and AUC (0.962), whereas AAIndex precision (0.950), specificity (0.961), accuracy (0.961) and
MCC (0.922).
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Table 31: Performance of random forest model based on selected descriptors in
the prediction of functional and non-functional amyloids. The highest value for a
given measure was bolded. The mean as well as the minimum and the maximum values in
parentheses calculated for 100 runs were also presented.

Measure DC A AlIndex CTriad APAAC

Precision  0.932 [0.874-0.980]  0.950 [0.914-0.976] 0.871 [0.808-0.938] 0.922 [0.863-0.959)
Sensitivity 0.980 [0.945-0.996] 0.962 [0.923-0.995]  0.974 [0.945-0.996] 0.962 [0.907-0.991]
Specificity  0.944 [0.893-0.984]  0.961 [0.930-0.980] 0.889 [0.848-0.952] 0.937 [0.892-0.967]
Accuracy  0.960 [0.933-0.987]  0.961 [0.935-0.980] 0.926 [0.894-0.963] 0.948 [0.920-0.968]
AUC 0.962 [0.936-0.987] 0.961 [0.933-0.981]  0.931 [0.906-0.965] 0.950 [0.920-0.969]
MCC 0.920 [0.868-0.974]  0.922 [0.866-0.959] 0.856 [0.796-0.925] 0.896 [0.839-0.937]

APAAC - Amphiphilic Pseudo-Amino Acid Composition, CTriad - Conjoint Triad, DC - dipeptide composition

In Tab. and Tab. [33] we selected the top twenty dipeptides that showed the largest
importance for random forest classification. Their importance was assessed by two measures:
Mean Decrease Accuracy, which describes how much the model accuracy decreases if we drop
a given variable, and Mean Decrease Gini, which is based on the Gini impurity index used for
the calculation of splits in trees and describes the inconsistency of classification by nodes in
trees. Twelve dipeptides were chosen at the same time by these two criteria: AK, CA, DI,
ER, FQ, HP, NG, PG, RG, SS, ST and TS. The dipeptides selected by these two criteria are a

combination of mainly serine, threonine, glycine, arginine, alanine and isoleucine.



7.3 Results

135

Table 32: Top twenty dipeptides that showed the biggest Mean Decrease in Accu-
racy in random forest prediction of functional and non-functional amyloids. The
mean as well as the minimum and the maximum of this measure calculated for 100 runs were

presented.

Dipeptide

Mean [Min-Max]

SS
RG
ST
NG
CA
FQ
ER
TS
PG
DI
GS
IC
TT
SG
AK
SA
HP
IE
MD
AS

20.98 [13.72-35.02]
18.12 [14.18-24.77]
15.82 [11.42-22.1]

15.23 [12.01-22.57)
15.05 [11.16-19.71]
14.92 [11.85-19.48)
13.83 [10.85-17.43)
13.7 [11.06-16.66]

13.68 [10.85-15.93)
13.54 [10.11-20.26)
12.4 [9.34-15.94|

11.73 [9.03-16.98)
11.57 [9.34-14.8]

11.52 [8.97-14.25]
11.49 [8.29-14.26]
11.39 [9.37-14.66]
10.96 [8.01-13.59)
10.88 [8.41-15.29)
10.87 [8.67-13.24]
10.71 [8.87-13.36]
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Table 33: Top twenty dipeptides that showed the biggest Mean Decrease in Gini
in random forest prediction of functional and non-functional amyloids. The mean

as well as the minimum and the maximum of this measure calculated for 100 runs were

presented.

Dipeptide

Mean [Min-Max]

SS
RG
NG
ST
FQ
ER
CA
TS
DI
PG
AK
SI
RR
RV
NT
KV
VW
TY
DT
HP

26.51 [12.2-56.74]
21.14 [10.89-38.32]
17.92 [9.69-38.28)
17.29 [9.32-31.78)
14.5 [8.58-24]
12.09 [6.66-18.71]
11.38 [6.44-19.9]
10.56 [6.89-16.07]
9.47 [5.02-18.45]
9.4 [5.73-15.09]
9.12 [3.99-16.44]
7.75 [3.41-12.6]
6.89 [3.51-18.43]
6.32 [2.11-12.2]
6.32 [2.61-11.76]
6.04 [2.34-10.11]
6.02 [2.97-12.57]
5.84 [3.07-10.12]
5.55 [2.06-10.47]
5.52 [2.58-9.22)]

Likewise, we gather the top twenty amino acid indices that turned out the most important
in the prediction (Tab. and . Twelve indices were also agreeably chosen by these two cri-
teria: AURR980118, CHAMS830104, CHAMS830105, DAYM780201, EISD860102, FAUJ880111,
GRAR740101, LIFS790102, MITS020101,1 NAKH900103, PONP800104 and QIAN880122. The

indices selected by these two criteria refer mostly to parameters of the side chain, hydropho-

bicity, amphiphilicity, and charge as well as various protein conformations and structures, i.e.

a-helix, p-strand, -sheet and coil.
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Table 34: Top twenty amino acid indices that showed the biggest Mean Decrease
Accuracy in random forest prediction of functional and non-functional amyloids.

The mean as well as the minimum and the maximum of this measure calculated for 100 runs

were presented.

A AlIndex Description Mean [Min-Max]
AURR980118 Normalized positional residue frequency at helix termini  17.83 [12.92-27.08|
an
GRAR740101  Composition 17.81 [13.77-26.92]
PONP800104  Surrounding hydrophobicity in a-helix 17.74 [13.96-25.57]
CHAMS830105 The number of atoms in the side chain labelled 341 16.6 [13.54-21.53]
MITS020101  Amphiphilicity index 15.39 [12.19-18.87]
FAUJ880110  Number of full nonbonding orbitals 15.29 [12.56-20.63]
EISD860102  Atom-based hydrophobic moment 14.95 [13.48-17.47|
DAYM780201 Relative mutability 14.79 [11.71-18.37]
NAKH900103 AA composition of mt-proteins 14.78 [12.04-17.46]
FAUJ880111  Positive charge 14.6 [12.47-16.86]
SUYMO030101 Linker propensity index 14.45 [12.47-16.67]
FAUJ880105  STERIMOL minimum width of the side chain 14.29 [12.68-16.83]
QIAN880122  Weights for f-sheet at the window position of 2 14.12 [12.34-16.23]
TANS770108  Normalized frequency of zeta R 13.94 [11.8-17.25]
LIFS790102 Conformational preference for parallel S-strands 13.92 [11.62-16.28]
FASG760102  Melting point 13.86 [11.36-17.87]
AURR980106 Normalized positional residue frequency at helix termini  13.76 [11.78-15.55|
N1

CRAJ730102 Normalized frequency of -sheet 13.73 [11.02-17.72]
CHAMS30104 The number of atoms in the side chain labelled 2+1 13.69 [12.13-15.76]
ISOY800106  Normalized relative frequency of helix end 13.54 [11.45-16.1]
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Table 35: Top twenty amino acid indices that showed the biggest Mean Decrease
in Gini in random forest prediction of functional and non-functional amyloids.

The mean as well as the minimum and the maximum of this measure calculated for 100 runs

were presented.

A AlIndex Description Mean [Min-Max]
AURR980118 Normalized positional residue frequency at helix termini  27.08 [11.74-71.18]
an
CHAMS30105 The number of atoms in the side chain labelled 3+1 22.45 [13.48-46.25]
MITS020101  Amphiphilicity index 20.12 [10.78-41.48|
DAYM780201 Relative mutability 18.98 [10.2-36.24]
FAUJ880111  Positive charge 18.53 [10.2-29.66]
EISD860102  Atom-based hydrophobic moment 14.5 [9.33-21.13]
QIANS880129  Weights for coil at the window position of -4 12.77 [8.13-18.02]
GRAR740101 Composition 12.19 [8.68-22.5]
QIAN880123  Weights for S-sheet at the window position of 3 11.87 [7.65-17.9]
CHAMS30104 The number of atoms in the side chain labelled 2+1 11.6 [6.54-15.18]
SNEP660103  Principal component 111 10.91 [7.2-14.86]
PONP800104  Surrounding hydrophobicity in a-helix 9.94 [6.7-16.51]
AURRO980120 Normalized positional residue frequency at helix termini  9.81 [5.99-13.74]
C4
NAKH900103 AA composition of mt-proteins 9.5 [6.38-13.23|
LIFS790102 Conformational preference for parallel S-strands 8.81 [6.03-13.9]
SNEP660104  Principal component IV 8.75 [4.65-12.27|
FAUJ880104  STERIMOL length of the side chain 8.64 [4.72-11.64]
QIANS880122  Weights for S-sheet at the window position of 2 8.34 [6.12-11.71]
OOBM770102 Short and medium range non-bonded energy per atom  8.22 [3.66-11.24|
QIAN880139  Weights for coil at the window position of 6 7.78 |5.16-11.48|
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8 AmyloGraph - amyloid interaction database

8.1 Research objectives

Due to the lack of databases containing standardized descriptions of amyloid interactions,

including proteins under this study, i.e., CsgA and CsgB, we decided to create a database

to fill this gap. In our work on AmyloGraph [Burdukiewicz et al., 2022], we designed detailed

definitions of amyloid interactions (Fig. . Six of them deal with amyloid-amyloid interactions
and assume that there are only two participants in each interaction and that the interactor
modulates the self-assembly of the interactee. We have also developed three descriptors to more
rigorously describe the details of the scenarios, which provide specific determinations of possible
states. We also would like to emphasize that the designed descriptors do not replace existing

terminology, but rather standardize it.

A B

Interactee ‘ Impact on the speed of interactee fibrilization
+ faster aggregation

Interactor [ monomers ] or [ oligomers I ] or [ fibrils I I I ] slower aggregation

‘ no aggregation

‘ | ‘ ‘ [ [ I } no effect

no information

No interaction, interactee and interactor form fibrils independently.
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Fibrils are formed at slower speed or not at all. Physical binding inhibits fibrilization.
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Transient contacts accelerate fibrilization.

formation of fibrils by the interactee is inhibited]

‘ Presence of the heterogenous fibrils |

v :] ‘ | ‘ ‘ yes

Physical binding accelerate fibrilization.

VI l:[: [ ] [ ] [ ] no information

Creation of heterogeneous fibrils.

Figure 62: Definitions of amyloid interactions developed for the AmyloGraph. A) Six
scenarios of amyloid-amyloid interactions. Colors represent different amyloid molecules taking a part
in the interactions. Roman numerals denote different interaction scenarios. B) Three descriptors of
AmyloGraph. Grey rectangles represent descriptors, blue rectangles with round edges represent the

levels of the descriptor above.
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8.2 Materials and Methods

8.2.1 Systematization of terminology on interactions between amyloids

We created a precisely controlled vocabulary to describe the amyloid-amyloid interactions.
We assumed that there are only two participants in each interaction, interaction and interactee.
Next, we developed three categories of descriptors to better describe the interaction. They
were based on the fibrilization speed, the presence of physical binding between both interacting
proteins, and the appearance of heterogeneous fibrils (Fig. [62B).

Descriptors for fibrilization speed:
e 1. Faster aggregation:

— a) the maximum ThT emission of the reaction of the interactee and interactor is
higher than the emission for the interactee alone.

— b) the slope of the kinetic curve is steeper.

— ¢) the lag phase is shorter.

— d) the time required for the amyloid reaction to reach 50% of the final fluorescence
intensity is lower.

e 2. Slower aggregation:

— a) the maximum ThT emission observed at the end of the reaction of the interactee
and interactor is lower than the emission for the interactee alone.

— b) the slope of the kinetic curve is less steep.

— ¢) the lag phase is longer.
e 3. No aggregation:
— a) there is no confirmed fibrilization after the interaction.

e 4. No effect:

— a) the slopes of kinetic curves are similar.

— b) the maximum ThT emission is similar.
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— c¢) the lag phase is similar.
e 5. No information:
— a) there were no kinetic assays.

Descriptors for physical binding between interactee and interactor. Are there physical bonds

between interactee and interactor?:

1. Yes, direct evidence:

— a) there is experimental evidence that fibrils consist of two different amyloids.

— b) there is a visible colocalization of an interactee and an interactor in microscopic

images.

2. Yes, implied by kinetics:

— a) seeding is implied by kinetic experiments results and is interpreted as such by the

authors of the publication.
e 3. No:

— a) there is no effect on the elongation of interactees fibrils.

4. Formation of fibrils by the interactee is inhibited:
— a) the formation of interactees aggregates was slowed or halted by the interactor.

5. No information:

— a) there is no experimental evidence, the seeding is not implied by kinetic experiments

results.

Descriptors for indicating the presence of the heterogenous fibrils, which consist of inter-
actor and interactee molecules. Are heterogenous fibrils formed, composed of interactor and

interactee?:

e 1. Yes:
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— a) experimental evidence that fibrils consist of two different amyloids

— b) the mature fibrils are structurally different from fibrils formed in the presence of

an interactor

— ¢) the term coaggregation, heterogeneous or hybrid fibrils is used to describe the

aggregation process.
e 2. No, amyloid fibrils have the same dimension, which matches interactee alone:

— a) the same structure of interactee and interactor fibrils confirmed by a microscopy

technique.
— b) there are no fibrils at all.

— ¢) interactee and interactor are the same protein.
e 3. No information:

— a) no experimental evidence, seeding not implied by kinetic experiments.

8.2.2 Datasets preparation and curation

In order to create the interaction database, we needed to collect the data and curate it.
We have designed a three-stage pipeline, which includes the pre-screen of manuscripts, manual
curation, and independent final validation. The first two steps have been supported through
the design of the applicable forms, which standardized annotations. We managed to expand the
collection of many publications, and through labor-intensive efforts. In total, we analyzed 562
manuscripts. However, only 364 were potentially suitable for the database.

Having the collected manuscripts and data, we, along with other curators, attempted to
manually curate the database. We extracted information on amyloid interactions from each
paper, without reinterpreting the data and conclusions provided by their authors, except when
the authors did not describe the results or the description was limited. During the initial data
curation, we focused on annotating the manuscripts using the descriptors and collecting protein
sequences of interacting amyloids. The next step was the validation of our annotations by

other curators, who were not involved in the validation of a specific record during the initial
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curation. The final collections of manuscripts consisted of 172 publications and 883 amyloid-
amyloid interactions. Then, we tried to contact the authors of the publications to validate our
database entries, however, only 11 of them responded, confirming 81 interactions.

8.2.3 R package, shiny web server, and the database

AmyloGraph is available as an online web server. The front end of it is built using the Shiny

package [Chang et al.| 2022]. However, due to the fact that the application relies on external

servers, which reduces their persistence [Veretnik et al., 2008|, we have developed AmyloGraph

as an R package |Team et al., [2021]. The package itself needs only core knowledge of R to be

able to run it on a local PC.

8.3 Results

The results of the study were published in | Burdukiewicz et al.[[2022], the amyloids interaction

database is available at https://amylograph.com/. One of the main results of the amyloid
interaction database was the identification of the 48 interactions of CsgA and 14 interactions of

CsgB with other amyloid proteins (Fig. [63).

interactor_name interactee_name aggregation_speed elongates_by_attaching heterogenous_fibers doi

1 CsgA CsgA Faster aggregation Yes; implied by kinetics. No information 10.1074/jbe.M112.383737
2 CsgA CsgA Faster aggregation Yes; implied by kinetics. No information 10.1074/jbe.M112.383737
3 CsgA CsgA Faster aggregation Yes; implied by kinetics. No information 10.1074/jbe.M112.383737
4 CsgA CsgA Faster aggregation Yes; implied by kinetics. No information 10.1074/jbe.M112.383737
5 CsgA CsgA Faster aggregation Yes; implied by kinetics. No information 10.1074/jbe.M112.383737
6 CsgA CsgA Faster aggregation Yes; implied by kinetics. No information 10.1074/jbe.M112.383737
7 CsgA CsgA Faster aggregation Yes; implied by kinetics. No information 10.1074/jbe.M112.383737
8 CsgB CsgA Faster aggregation Yes; implied by kinetics. No information 10.1074/jbc.M112.383737
9 CsgB CsgA Faster aggregation Yes; implied by kinetics. No information 10.1074/jbe.M112.383737
10 CsgB CsgA Faster aggregation Yes; implied by kinetics. No information 10.1074/jbc M112,383737
1 CsgB CsgA Faster aggregation Yes; implied by kinetics. No information 10.1074/jbc.M112.383737
12 CsgA CsgA Faster aggregation Yes; implied by kinetics. No information 10.1074/jbe.M112.383737
13 CsgA CsgA No effect No No information 10.1074/jbc.M112.383737
14 CsgA CsgA No effect No No information 10.1074/jbc.M112.383737
15 CsgA CsgA Faster aggregation Yes; implied by kinetics. No information 10.1074/jbc.M112.383737
16 CsgA CsgA Faster aggregation Yes; implied by kinetics. No information 10.1074/jbc.M112.383737
17 CsgB CsgA Faster aggregation Yes; implied by kinetics. No information 10.1074/jbe.M112.383737
18 Amyloid beta CsgA No effect No No information 10.1074/jbc.M112.383737
19 Supds CsgA Slower aggregation Formation of fibrils by the interactee is inhibited No information 10.1074/jbe.M112.383737
20 CsgB Sup35 No effect No No information 10.1074/jbc.M112.383737
21 CsgA Amyloid beta No effect No No information 10.1074/jbc.M112.383737
22 CsgA Sup3s Faster aggregation Yes; implied by kinetics. No information 10.1074/jbe.M112.383737
23 CsgA CsgA No effect No No information 10.1074/jbc.M112.383737
24 CsgA Alpha-synuclein Faster aggregation Yes; implied by kinetics. No 10.7554/eLife.53111

25 CsgA Tau No effect No No 10.7554/eLife.53111

Showing 1 to 56 of 56 entries Previous 1 Next

Figure 63: Known interactions of CsgA and CsgB peptides in AmyloGraph.
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On a broader level, AmyloGraph contains 883 interactions between 46 proteins reported in
172 manuscripts. Moreover, we integrated into the database a user-friendly graph (Fig. ),
where nodes represent individual amyloids and their edges illustrate interactions between them.

In addition to the graphical representation of interactions, we also included a table with
interactees and interactors as well as links to UniProt records of these proteins (Fig. [64B). The
AmyloGraph table is dynamic, searchable, and the user can download selected rows. Down-
loaded data contain all available information, including the sequences of amyloid proteins par-
ticipating in the interactions.

Table as well as the graph representations of data can be filtered out using various criteria.
The filters cover all three descriptors. Moreover, the edges on the graph can be colored, according
to the levels of a chosen descriptor. Amino acid sequences can be used to filter the information
presented both in the graph and in the table. We have implemented a set of regular expressions
inspired by the POSIX system to facilitate more advanced searches of sequence motifs that
should appear in either interactor’s or interactee’s sequence.

By analyzing the interactions that occur between CsgA and CsgB and other amyloids, we
can determine that CsgA and CsgB react with essentially the same five proteins. The exceptions
are three proteins that react only with CsgA, namely Tau, a-synuclein and the lysosome (Fig.
. It is also worth noting that these other amyloid proteins also interact with each other.

Based on the database, we found also information about the character of these interactions.
CsgA can normally accelerate their own aggregation, but there are reports that also cannot.
The ones that do not impact on aggregation usually have modified sequences. They differ by
38 amino acids along the sequence, when compared to CsgA K12 model. It speeds up the
aggregation of IAPP, SEVI, and Sup35 but does not have any effect on the aggregation of
Tau. CsgA can have no effect or accelerate the aggregation of a-synuclein, depending on the
sequence variation of CsgA. Its impact on amyloid § can be also different from no effect to
acceleration. CsgA proteins speed up the aggregation of amyloid [, even if they lack a signal
peptide. However, amyloid 3, which is only two amino acids longer than the interacting one, does
not react to CsgA. Transthyretin either has no effect, slows down, or inhibits the aggregation
of CsgA, depending on the variation of the sequences. There are 13 records of transthyretin

impacting the aggregation of CsgA with different protein sequences.
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[

Figure 64: Record for CsgA in the AmyloGraph database. A) Graph view of amyloid-amyloid
interactions. The interactions (edges) are colored according to the levels of descriptor 2, “physical
binding”. The right-hand panel represents an overview of the interactions. B) Tabular view of

interactions. The top section of this card contains download options allowing to obtain data.
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Figure 65: CsgA and CsgB graph interactions from AmyloGraph. A) CsgA, B) CsgB inter-

actions with other amyloid proteins.
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It was confirmed that CsgB accelerates the aggregation of CsgA. In articles, it can either
speed up or slow down the aggregation of amyloid 3, despite both proteins having identical
sequences. Additionally, CsgB speeds up the aggregation of IAPP and SEVI, but has no effect
on Sup35. Considering transthyretin, it either has no effect or slows down the aggregation of
CsgB, depending on the sequence length. Specifically, transthyretin with 20 fewer amino acids
(27 aa) at the N-terminus has no effect, whereas that with 147 amino acids slows down the

process.
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9 Discussion

9.1 Experimental validation of amyloid peptides

The first problem undertaken in the dissertation was to validate the performance of our
amyloid protein prediction software, AmyloGram [Burdukiewicz et all 2017]. We selected two
datasets for validation, the first, called a reference, contained the 10 peptides (5 amyloid, 5
non-amyloid) that were correctly predicted by this software according to annotations in Amy-
Load database [Wozniak and Kotulska, [2015]. The second collection contained 24 peptides, 12
predicted by AmyloGram as false positives, and 12 as false negatives. To experimentally vali-
date the amyloidogenicity properties of these peptides, we used Thioflavin T (ThT) assay and
Atomic Force Microscopy (AFM). We used the reference dataset to set the relevant parameters
and work out the entire testing protocol. The reference peptides revealed properties in the
experiments expected from the computational predictions, which supports the efficiency of this
algorithm.

An interesting case showed peptide SWVIIE, which was predicted as non-amyloid matching
also the database annotation. This peptide gave unexpectedly a high signal in the ThT assay,
despite its indication as a non-amyloid. By using AFM, we determined that it did not form
fibrils but amorphous oligomers, which can also be made up of cross- sheets. The results
indicate that oligomeric forms can also bind thioflavin T providing a misleading conclusion
that they can create amyloid fibrils. It also shows how important is validation by microscopic
methods, e.g., AFM or EM, of the results from ThT assay |Gosal et al., 2006, [Fitzpatrick and
Saibil, 2019, Martins et al.| [2020].

A good performance of AmyloGram was confirmed in the analyses of 24 peptides showing
contradictory computational predictions and database annotations. Six peptides predicted as
amyloids bounded ThT in the experiments, whereas ten recognized as non-amyloid did not.
Thereby, we were able to find 16 out of the 24 sequences that were mislabelled in the database.
Even though the data were erroneous, our predictor, AmyloGram, proved resistant to overfitting
and was able to identify the mislabelled sequences in its training dataset.

It should also be added that the peptide FTFIQF was initially annotated as non-amyloid in

AmyLoad, but AmyloGram and ThT assays concluded that it shows amyloidogenic properties.
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AmyloGram has been proven correct by another amyloid database, where they have AFM image
of fibrils created by the FTFIQF peptide [Louros et all 2020a].

The results indicate that it is important to verify experimentally even those peptides that are
predicted with high probability and annotated in databases. Due to the variable performance
of the peptides and various applied experimental procedures, a standard should be worked out
in order as the results are comparable and the weight of sequences used to train computational
models to be similar. The obtained results can help to improve the current software and set

more precise cut-offs for amyloid prediction using experimental peptide data.

9.2 Bioinformatic and phylogenetic analyses of CsgA and CsgB

One of the main aims of this dissertation was a detailed computational analysis of CsgA
and CsgB amyloid proteins, which fulfill a common role in fibril formation and aggregation
[Chapman et al., 2002, [Wang et al., [2008|. So far only the closest homologs were investigated
[Dueholm et al 2012, |Christensen et al., 2019|, and the evolutionary history and phylogenetic
relationships of these proteins were not known. Therefore, we applied more objective motif
searching with statistical evaluation of this finding. We found five repeated regions in sequences
of both proteins. The regions are separated by 1 to 2 residues in CsgA, but are adjacent in
CsgB. The consensus motif of CsgA regions is twenty-one amino acids long and is characterized
by nine or more conserved sites, whereas in CsgB, it has 22 amino acids and includes at least 7
conserved sites. Interestingly, the found motifs differ from those identified by |[Hammer et al.
2007), which are shorter and shifted by two residues in the case of CsgA and by three residues
in CsgB (Fig. [3).

The motifs in these two proteins share common features. They contain a central glycine sur-
rounded by polar residues (asparagine, glutamine and serine) and hydrophobic residues (valine
and isoleucine) occurring alternatively. It seems that such an organization enables the forma-
tion of fB-sheets by the regions interacting with each other and in consequence fibril creation.
The glycine breaks two [-strands created by the halves of the given region. In agreement with
that, glycine is commonly known as a secondary structure breaker and is frequent in turns.
Asparagine and serine are more frequent in (-sheets than a-helices. Glutamine is generally

present in both secondary structure types in similar content, but more frequent than in turns.
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Hydrophobic branched amino acids, such as valine and isoleucine) are also favored to be found
in [-strands in the middle of -sheets.

Using a more sensitive internal sequence comparison, we found an additional region located
before the others and showing significant similarity to those five already identified, especially in
CsgA. This region demonstrated the presence of -strands such as the five duplicated regions,
which supports this hypothesis that the analyzed amyloid proteins could have in the past at
least six similar repeating motifs. Five of them stayed more conserved and the other diverged.
It is not inconceivable that the region between the signal peptide and region 1 also participates
in aggregation.

In spite of the similar organization, sequences of CsgA and CsgB showed similarity only
up to 30% |Zhou et al. 2012c|. Therefore, we tried to find out whether the similar structural
organization is a result of convergence or whether these proteins are distant homologs and share
a common ancestry. That is why we performed sensitive searches for distant homologs and
conducted a comparison of HMM profiles based on sequences classified into clusters according
to similarity.

We identified 15,703 potential homologous sequences that contained at least one of the three
conserved curlin domains characteristic of the reference CsgA and CsgB proteins. The homologs
also showed a typical N-terminal signal peptide with a length usually from 20 to 26 residues. It
indicates that these proteins are secretory as the reference CsgA and CsgB. The prediction of
the secondary structure of the reference sequences from FE. coli showed that signal peptide in
CsgB folds likely into a-helix, whereas that in CsgA can also adopt [-strand.

Clustering analysis, indicated that these proteins are distant homologs not directly related,
and their evolution was longer and more complex than expected. More than 98% homologs were
found in Bacteria and only some sequences in Archaea and viruses. They can represent cases of
horizontal gene transfer. Most findings in Eukaryota are probably contamination or false posi-
tives because many of these sequences showed the presence of other conserved domains, which
can resemble curli motifs due to molecular convergence. Considering the Bacteria domain, these
homologs are predominantly present in two phyla Bacteroidota and Proteobacteria, especially in
a-Proteobacteria and ~y-Proteobacteria. It indicates that in these groups the evolution of these

proteins have occurred.
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Our analyses showed that homologs from Bacteroidota are closely related with those from
~-Proteobacteria. In global phylogenomics studies, these two groups are distant lineages [Zhu
et al., 2019, Hug et al. 2016], so we can assume that Bacteroidota gained a curli gene in
the way of horizontal gene transfer from v-Proteobacteria. Some sequences identified in other
bacteria phyla and classes, present in minority and branched in phylogenetic trees contrary to
their taxonomic affiliation, can be also associated with horizontal gene transfer, e.g. between
Proteobacteria subgroups. Phylogenetic analyses demonstrated that the division of CsgA and
CsgB lineages occurred after the divergence of v-Proteobacteria from a- and [3-Proteobacteria,
but before the radiation of «v-Proteobacteria.

Detailed phylogenetic analyses in closer relatives to E. coli CsgA and CsgB, mainly in
Enterobacterales identified potential case of horizontal gene transfer of CsgA and CsgB from
Fuwingella to Pseudomonas reactans as well as CsgA from Enterobacter to Astraeus odoratus
and CsgB from Enterobacterales to Bacteroidales. The separation of some Enterobacteriaceae
genera, i.e. Kluyvera, Shimwellia and Klebsiella, from the main clade of this family, can also
suggest that CsgA and CsgB genes were transferred to them from representatives of other
Enterobacterales families. It is also possible that the taxonomic classification of these genera is
not correct, and they should not move to other families.

Investigations of five duplicated regions in Enterobacterales showed that those in CsgA ho-
mologs are characterized by seven conserved sites including in the order: serine, a hydrophobic
residue (valine or isoleucine), glutamine, glycine, asparagine, alanine and glutamine. In CsgB
homologs, there are six conserved sites across all five regions containing in the order: alanine, a
hydrophobic residue (valine or isoleucine), glutamine, asparagine, a hydrophobic residue (valine
or isoleucine), and glutamine. The most deviated is the 5th region. When we consider only
four more conserved regions, they will share additional three conserved sites including glycine,
asparagine and alanine. The conserved residues are important in formation of g-strands, which
create [-sheets and specific fibril organization of these proteins. It should be added that each
region is also characterized by specific residues, which distinguish it from the others. These
characteristic residues are conserved across compared sequences in various taxa, which suggests
that they can be also important in forming appropriate secondary structure and interactions

between regions. It also indicates that a similar secondary structure can be formed by different
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sequences. The collected sequences of regions can be used to construct HMM profiles individ-
ually for CsgA and CsgB or even particular regions. These profiles can help in more sensitive
searches of curlin domains.

Generally, CsgA regions showed a larger variation than those in CsgB, which means that
CsgA evolves quicker than CsgB. The greatest number of substitutions were accumulated in
region 4 and the smallest in 5 in CsgA homologs. The smallest divergence of region 5 can be
related with its role in direct interaction with region 1 from CsgB |[Dunbar et al., 2019]. In
CsgB sequences, region 2 evolved the fastest, and region 5 was also the least changed. It is
interesting that the CsgB region 5, the most deviated from the common motif, demonstrated
the smallest sequence variation within Enterobacterales. The conservation of region 5 in CsgB
can be associated with its role in the nucleation of CsgA [Hammer et al., [2012].

Based on the phylogenetic tree of HMM profiles of individual regions we can propose a
potential order of duplication of these regions presented in Fig. [35 They were duplicated in
a different order in CsgA and CsgB homologs. Definitely, the regions in one protein share a
common ancestry and the duplication events occurred at first within a given protein lineage.

Pairwise comparisons of distances calculated for regions, showed that potentially interacting
regions evolved in a more correlated manner than those more distant in the structure. Larger
correlations were demonstrated by CsgA regions, which can mean that interactions between
these regions should be more conserved in this protein than in CsgB. In fact, the interactions of
between CsgA regions result in the formation of amyloid fibrils and CsgB initiates this process

[Hammer et al., 2007, [Shu et al.| 2012].

9.3 Experimental analyses of CsgA and CsgB variants without se-

lected regions

The subsequent problem undertaken in this dissertation was to evaluate the importance of
five individual regions of CsgA and CsgB proteins in their aggregation process. We successfully
constructed plasmids encoded by various variants of CsgA and CsgB proteins, a wild type
and five variants with deleted one of the regions. We also were able to effectively purify these

proteins. It should be emphasized that this experimental endeavor was not an easy task because
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the extraction and purification of amyloid proteins and their use in further studies is difficult due
to a high tendency to aggregation. The purification of CsgA variants using Cobalt and Ni-NTA
resins was successful but those of CsgB failed, despite many trials in small-scale production,
and the visible product on the Western Blot. One reason may be that purifying the CsgB
protein does not scale from small to large-scale production as well as it does in the case of
CsgA. Another reason could be that CsgB is much more toxic for a cell than CsgA, so when
produced on a larger scale, it caused the cell producing it can die. In the future, we will test
this by gradually scaling up the production.

The variant after deletion of R1 region turned out the most efficiently aggregating according
to our ThT assay analyses. It suggests that this region, although also participating in the
fibril polymerization process, regulates and slows down the aggregation in the native CsgA
protein. On the other hand, the variant with R5 deletion very poorly bounded thioflavin T
and required more time in the aggregation process. The removal of R4 region did not increase
substantially the fluorescence in ThT assay either but improved the aggregation better than
ARD variant. Other variants and wild type were placed rather between the most extreme
variants. CsgA WT showed very poor aggregation in some experiments, although we would
like to note that this protein eluted the slowest during purification. This may reflect the fact
that it had already started aggregation on the deposit and stayed there, thus we were unable
to capture the aggregation kinetics.

The results indicate that R5 and also R4 are more important in the aggregation than oth-
ers. The importance of R5 very well corresponds to the slowest evolution rate of this region
in Enterobacterales as found in this thesis. The R5 region interacting with R1 of the other
molecule, and R4 interacting with R5 can control the start of the aggregation process, without
which amyloid fibrils cannot form. The R2 and R3 regions may have a smaller impact on the
aggregation process than other due to the fact that they are placed in the middle of the folded
protein. The results are comparable with those obtained by other experiments [Wang et al.
2008|, which found that the lag phase for rapid fibril growth is the largest for variants without
R5 and the shortest for R1. The difference concerns the WT and AR2 variant. They noticed
the aggregation efficiency is slightly better for WT than AR2, but our studies indicated that it

is comparable or greater for the latter.
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We observed amyloid fibrils under AFM only for selected variants, including the very well
aggregating AR1 variant. A problem with obtaining the fibril under AFM, occurred even when
we changed the polarity of the micas to make them better adhere to the substrate. We suspect
that one week of incubation might have been too short in the case of these proteins to obtain long
and visible amyloid fibrils like in the works of |Sleutel et al.[[2017], or insulin fibrils in [Sakalauskas
et al.|[2019]. Increasing the concentration did not help their observation, either. Alternatively,
CsgA fibrils need a more modified protocol for their preparation on mica. Therefore, we plan
to refine the purification protocol so that the purified proteins would have more reproducible

results when measuring aggregation kinetics before analysis with the HDX-MS technique.

9.4 Comparison of functional and non-functional amyloids in terms

of sequence features

Besides CsgA and CsgB, there are also other functional amyloids that fulfill various functions
and represent different protein families in prokaryotes and eukaryotes [Maury, 2009} Van Gerven
et al. 2018|. Therefore, we decided to compare the functional and non-functional amyloids in
terms of sequence features that can be used to elaborate a prediction model. Detailed statistical
and discriminant studies showed that sequences in these groups are characterized by specific
features, which can be used in their recognition. Sequences of functional amyloids show a
high frequency of small hydroxylated amino acids, serine and threonine. In consequence, they
are also rich in dipeptides including these residues, i.e. ST, TS, TT, SS, AS, SA, SG, TG,
AT, GS, SN, GT and DS. It can be noticed that these amino acids co-occur with other small
amino acids, glycine and alanine, and include polar asparagine and aspartic acid. On the other
hand, sequences of non-functional amyloids contain more basic amino acids (arginine, lysine
and histidine), hydrophobic (leucine, methionine and cysteine) and polar tyrosine. The most
common dipeptides in these sequences are LK, AK, KV, LL, RV, FQ, ER, KE, EL, EK, VR,
LR and DL. These specific compositions can be associated with the distinct behavior of their
structures. The non-functional amyloids have a tendency to adopt other conformations, e.g.
B-cross, which causes the loss of functionality and is related with many disorders. In agreement

with that our analyses demonstrated that discriminating amino acid indices are related mainly
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with loop, turn, g-sheet, S-turn, § region, flexibility, buriability, hydrophobicity, net charge,
protein stability, optimized relative partition energies and free energy change.

Interestingly, in each group of these amyloids, it is possible to identify subgroups of sequences
that show different composition and sequence descriptors. It indicates that various types of
proteins belong to these proteins. The heterogeneity was revealed in plots of methods reducing
multidimensionality.

We studied many features and the best discriminating occurred dipeptide composition and
amino acid indices in random forest models. Measures used in the assessment of classifiers and
predictors, i.e. precision, sensitivity, specificity, accuracy, AUC and MCC achieved values mostly
higher than 0.9. Based on that a very good predictor for the functional and non-functional

amyloids can be elaborated.

9.5 Database of interactions between amyloids

The final problem undertaken in this dissertation was the creation of an amyloid interac-
tion database, which would include information on interactions between the CsgA and CsgB
proteins and other amyloids. Interactions between amyloid proteins were the subject of many
experimental studies. Although, there are several databases that collect data on amyloid pro-
teins [Wozniak and Kotulskal, [ 2015| Louros et al. |2020a) |[Varadi et al., 2018, Rawat et al., 2020,
Pawlicki et al., 2008], they do not have data on interactions between them. Ren et al. [2019]
has attempted to systematize and organize the data about the interactions between amyloids.
Although he included many amyloid proteins in his work, he did not describe functional amy-
loids, CsgA and CsgB. Moreover, we can find contradictory interaction data in many papers
dealing with interamyloid interactions [Tran et al., [2017]. One of the reasons for this is the
lack of clear definitions of interactions and the required standardized experiments to determine
this. This makes the analysis of interactions between amyloids problematic when we want to
compare different experimental results.

Therefore, to create our database of amyloid interactions, we began by designing six sce-
narios of what such interactions look like. And three descriptors describe interactions’ effect on
aggregation rates, whether and how they bind, and what type of fibril they form. Thereby, we

have organized and systematized the terminology related to amyloid interactions. Thanks to the
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development of the database, we were able to find 48 interactions of CsgA and 14 interactions
of CsgB with other amyloid proteins. CsgB reacts with five and CsgA with additional three
amyloid proteins. After in-depth sequence analyses, this information can give us a preview of
which regions of CsgA and why they are able to bind an additional three amyloids than CsgB,
even though they have a very similar structure. Information in the database can help to under-
stand how individual proteins affect, inhibit or accelerate the aggregation process. It may also
serve in future analyses to identify sequences that will be able to efficiently inhibit or accelerate
the aggregation of selected amyloid proteins associated with diseases.

The created interactive database based on the Shiny [Chang et al., [2022| server can be
intelligible for many users. Based on the gathered data, we want to elaborate on a predictor
of regions that might be more aggregation-prone or responsible for nucleation. At the moment,
the database is focused on the whole families of protein homologs or single variants. But in
the future, we would like to expand it significantly, including information on the effect of small
molecules on aggregation. In addition, we also want to add information on the conditions of
the experiment, such as pH, temperature, or protein concentration [Pfefferkorn et al., |2010|, Hu
et al., 2009).

The analysis of the interactions between CsgA and CsgB and other amyloid proteins provides
valuable insights into the complex nature of protein aggregation. The fact that CsgA and
CsgB react with essentially the same five proteins suggests that these proteins may play a
key role in the aggregation process. However, the exceptions, such as Tau, a-synuclein, and
lysozyme, which only react with CsgA, indicate that there are specific interactions between these
proteins that may contribute to the differences in their aggregation behavior. The acceleration
of CsgA aggregation by other CsgA is a common observation, although there are also some
papers that show no interaction at all. This variability may be attributed to differences in
experimental conditions or protein concentrations, which can affect the rate of aggregation. It
is interesting that a protein sequence that is only two amino acids longer than CsgA and CsgB,
i.e. amyloid 3, does not affect the acceleration of CsgA aggregation, while those 40 amino acids
long do. It highlights the importance of some sequence features in protein-protein interactions
and aggregation.

The mutually exclusive results observed with Sup35, where one publication indicates acceler-
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ation and the other slowing of the interaction, underscores the complexity of protein aggregation
and the need for further investigation to fully understand the mechanisms involved. Similarly,
the different effects of a-synuclein and IAPP on the rate of aggregation depending on whether
they are the interactee or interactor suggest that the behavior of these proteins is highly context-
dependent.

The fact that Tau and lysosome have no effect on aggregation, whereas SEVI accelerates
CsgA aggregation indicates that different proteins may have distinct roles in the aggregation
process. The findings regarding CsgB interactions with other amyloid proteins further emphasize
the complexity of protein aggregation and the need for further research to fully understand the
mechanisms involved.

The interactions between proteins and their effects on each other are complex and multi-
faceted. This is highlighted by the different effects that CsgA has on various proteins, as well as
the effects of other proteins on CsgA. One interesting observation is that the sequence variation
in CsgA can lead to different effects on the aggregation of a-synuclein and amyloid 3. This
suggests that the specific amino acid sequence of a protein can have a significant impact on
its interactions with other proteins. It is also noteworthy that CsgA can affect the aggregation
of a variety of different proteins, including itself, IAPP, SEVI, and Sup35. This suggests that
CsgA may have a broader role in protein aggregation than previously thought. Transthyretin
also has a complex relationship with both CsgA and CsgB, with varying effects depending on
the specific sequences involved. This highlights the fact that protein-protein interactions can
be highly specific and context-dependent or there may be other factors at play beyond just the
amino acid sequence of the protein.

Overall, the analysis of the interactions between CsgA and CsgB and other amyloid proteins
provides valuable insights into the complex nature of protein aggregation and highlights the need
for further investigation to fully understand the mechanisms involved. Moreover, the found in-
teractions between amyloids underscore the need for further research to better understand the
mechanisms underlying protein-protein interactions and their effects on protein aggregation.
By gaining a deeper understanding of these interactions, we may be able to develop new ap-
proaches for preventing or treating protein aggregation-related diseases such as Alzheimer’s and

Parkinson’s.
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10 Conclusions

e Our algorithm AmyloGram designed for the prediction of amyloids is resistant to overfit-

ting and occurred efficient in recognition of experimentally validated peptides.

e We identified 16 out of the 24 peptides that were incorrectly annotated in the database
AmyLoad.

e Some peptides, e.g. SWVIIE, which are amorphous oligomers and do not form fibrils, can

give a high signal in the ThT assay.

e More objective motif searching with statistical evaluation showed five repeated regions
in sequences of CsgA and CsgB. CsgA repeating motifs with a length of 21 residues are
separated by one or two amino acids, whereas those in CsgB has a length of 22 residues

and with no separation.

e The consensus motif in CsgA regions includes nine or more conserved sites, whereas that
in CsgB comprises at least seven conserved sites. The composition and distribution of
polar and hydrophobic residues corresponds to the presence of two (-strands per region

broken by the central glycine.

¢ A more sensitive internal sequence comparison revealed an extra region located before the

others, showing similarity to them and possibly folding into S-strands.

e There are at least 15,703 potential homologs of CsgA and CsgB that comprise conserved
curlin domains. Most of them are also equipped with N-terminal signal peptide typical of

the reference CsgA and CsgB.

e CsgA and CsgB homologs evolved mainly in Bacteria, especially in Bacteroidota as well

as a-Proteobacteria and ~y-Proteobacteria.

e CsgA and CsgB are distant homologs that arose by duplication after separation of ~-

Proteobacteria from «- and [-Proteobacteria but before v-Proteobacteria differentiation.
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e The CsgA and CsgB homologs were likely subjected to horizontal gene transfer; e.g.
between various Proteobacteria subgroups, from ~v-Proteobacteria to Bacteroidota, and

possibly from Enterobacterales to Pseudomonas reactans and fungus Astraeus odoratus.

e Five duplicated regions of CsgA and CsgB in Enterobacterales exhibit seven and six con-
served sites respectively, including hydrophobic, polar and glycine residues, which are
important in the formation of S-strands. Each region can be distinguished from the oth-

ers by distinctive conserved residues.

e Regions in CsgA evolve faster than those in CsgB. Region 5 shows the smallest divergence
rate in both proteins probably due to the selection on interactions with region 1 of other

molecules of the curly proteins.

e CsgA and CsgB regions were duplicated in a different order and the duplication events

occurred before the lineages of these proteins separated.

e The evolution of potentially interacting regions in the curli proteins was generally more
correlated than those of more remote in the structure. CsgA regions showed stronger
correlations in amino acid substitutions, which may indicate that interactions between

these regions in this protein should be more conserved than in CsgB.

e CsgA ARI turned out the most efficiently aggregating, suggesting that region 1 is respon-

sible for slowing down the process.

e CsgA AR5 needs much more time to start aggregation, which suggests that region 5 plays
a crucial role in the polymerization process of amyloid fibrils, e.g. due to interaction with

region 1 of other CsgA molecule.

e The other of CsgA variants were placed between the aforementioned protein constructs it

terms of aggregation speed.

e Wild type of CsgA showed a very long lag phase and low fluorescence intensity, which
may result from the fact that it had already started to aggregate during elution and was

left on the resin.
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e Although functional and non-functional amyloids are heterogeneous groups, they have
distinctive characteristics that can be used in their prediction. Sequences of functional
amyloids have a high content of small hydroxylated amino acids, serine and threonine
co-occurring with other small glycine and alanine, and polar asparagine and aspartic acid.
However, sequences of non-functional amyloids comprise more basic arginine, lysine and

histidine, hydrophobic leucine, methionine and cysteine as well as and polar tyrosine.

e The functional and non-functional amyloids can be effectively predicted in random forest
models based on dipeptide composition and amino acid indices associated with various
secondary structures, flexibility, buriability, hydrophobicity, net charge, protein stability,

optimized relative partition energies and free energy change.

e Based on a newly developed database of amyloid interactions AmyloGraph, we identified
48 interactions of CsgA and 14 interactions of CsgB with other amyloid proteins. CsgA

interacts with 9 proteins, whereas CsgB with 6.

e The database can be useful in determining how individual proteins affect the aggregation

process.
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12 Achievements

12.1 Grants

e Deutscher Akademischer Austauschdienst (DAAD)
Research Grants - One-Year Grants for Doctoral Candidates, 2020/21 (57507870)

Proteinaceous scaffolds of biofilms produced by gram-negative bacteria

12.2 Publications

e AmyloGraph: a comprehensive database of amyloid-amyloid interactions.
Michat Burdukiewicz, Dominik Rafacz, Agnieszka Barbach, Katarzyna Hubicka, Laura
Bakala, Anna Lassota, Jakub Stecko, Natalia Szymanska, Jakub W Wojciechowski, Do-
minika Kozakiewicz, Natalia Szulc, Jarostaw Chilimoniuk, Izabela Jeskowiak, Marlena
Gasior-Glogowska, Matgorzata Kotulska.
Nucleic Acids Research 2022 Oct 16;gkac882. doi: 10.1093/nar/gkac882.
IF = 16.971, PM = 200

e Adhesion of Enteropathogenic, Enterotoxigenic, and Commensal Escherichia coli to the
Major Zymogen Granule Membrane Glycoprotein 2.
Christin Bartlitz, Rafal Kolenda, Jarostaw Chilimoniuk, Krzysztof Grzymajto, Stefan
Rodiger, Rolf Bauerfeind, Aamir Ali, Veronika Tchesnokova, Dirk Roggenbuck, Peter
Schierack.
Applied and Environmental Microbiology 2022 Mar 8;88(5):€0227921. doi: 10.1128/aem.02279-
21.
IF = 4.792, PM = 100

e Bioinformatics methods for identification of amyloidogenic peptides show robustness to
misannotated training data.
Natalia Szulc, Michal Burdukiewicz, Marlena Gasior-Glogowska, Jakub W. Wojciechowski,
Jarostaw Chilimoniuk, Pawet Mackiewicz, Tomas Sneideris, Vytautas Smirnovas Malgo-

rzata Kotulska.
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Scientific Reports (2021) 11:8934
IF = 4.379, PM = 140

e countfitteR: efficient selection of count distributions to assess DNA damage.
Jarostaw Chilimoniuk, Alicja Gosiewska, Jadwiga Stowik, Romano Weiss, P. Markus Deck-
ert, Stefan Rodiger, Michal Burdukiewicz.
Annals of Translational Medicine 2021;9(7):528
IF = 3.932, PM = 40

e Proteomic Screening for Prediction and Design of Antimicrobial Peptides with AmpGram.
Michat Burdukiewicz, Katarzyna Sidorczuk, Dominik Rafacz, Filip Pietluch, Jarostaw
Chilimoniuk, Stefan Rodiger, Przemystaw Gagat.

International Journal of Molecular Sciences, 21:12, 2020. 10.3390/ijms21124310
IF = 5.923, PM = 140

e Prediction of Signal Peptides in Proteins from Malaria Parasites.
Burdukiewicz M., Sobczyk P., Chilimoniuk J., Gagat P., Mackiewicz P.
International Journal of Molecular Sciences 19(12), 3709, 2018.

IF = 5.923, PM = 140

e PhyMet2: a database and toolkit for phylogenetic and metabolic analyses of methanogens.
Michat Burdukiewicz, Przemystaw Gagat, Stawomir Jabtloriski, Jarostaw Chilimoniuk,
Michat Gaworski, Pawel Mackiewicz, Marcin Lukaszewicz.

Environmental microbiology reports 10(3):378-382, 2018
IF = 3.541, PM = 100

Total IF = 45.47, Total PM = 860

12.3 Internships

e Amyloid Research Group, Institute of Biotechnology, Vilnius University. Vilnius, Lithua-
nia.

05.12.2022-24.12.2022
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e Multiparameter Dianostic group, Institute of Biotechnology, Brandenburg University of
Technology Cottbus - Senftenberg. Senftenberg, Germany.
01.11.2021-26.12.2021

e Multiparameter Dianostic group, Institute of Biotechnology, Brandenburg University of
Technology Cottbus - Senftenberg. Senftenberg, Germany.
01.10.2020-30.09.2021

e Image Based Assays group, Institute of Biotechnology, Brandenburg University of Tech-
nology Cottbus - Senftenberg. Senftenberg, Germany.
01.03.2020-29.05.2020

e Image Based Assays group, Institute of Biotechnology, Brandenburg University of Tech-
nology Cottbus - Senftenberg. Senftenberg, Germany.
01.10.2019-16.12.2019

e Image Based Assays group, Institute of Biotechnology, Brandenburg University of Tech-
nology Cottbus - Senftenberg. Senftenberg, Germany.
01.07.2019-30.11.2019 - Erasmus+

e Image Based Assays group, Institute of Biotechnology, Brandenburg University of Tech-
nology Cottbus - Senftenberg. Senftenberg, Germany.
15.04.2019-31.05.2019

e Image Based Assays group, Institute of Biotechnology, Brandenburg University of Tech-
nology Cottbus - Senftenberg. Senftenberg, Germany.
04.02.2019-15.02.2019

e Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius
University. Vilnius, Lithuania.

02.11.2018-09.11.2018

e Multiparameter Diagnostics group, Institute of Biotechnology, Brandenburg University of
Technology Cottbus - Senftenberg. Senftenberg, Germany.
01.04-30.09.2018
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e Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius
University. Vilnius, Lithuania.

07.01-26.01.2018

12.4 Conference Talks

e Imputomics: Imputation of missing values for "Omics" data.
Metabolomics Circle, Wroctaw, Poland.
Jarostaw Chilimoniuk, Krystyna Grzesiak, Dominik Nowakowski, Adam Kretowski, Michat
Ciborowski, and Michal Burdukiewicz

27.01-28.01-2023

e countfitteR: count data analysis for precision medicine.
International Biotech Innovation Days 2020 (IBID), Senftenberg, Germany.
Jarostaw Chilimoniuk, Alicja Gosiewska, Jadwiga Stowik, Romano Weiss, P. Markus Deck-
ert, Stefan Rodiger and Michal Burdukiewicz
28.10-29.10.2020

e Count data analysis with countfitteR.
Why R? 2020, Warszawa, Poland.
Jaroslaw Chilimoniuk, Alicja Gosiewska, Jadwiga Slowik, Romano Weiss, P. Markus Deck-
ert, Stefan Rodiger, Michal Burdukiewicz
24.09-27.09-2020

e AmyloGram: prediction of amyloid sequences in R.
satRday, 2019, Gdansk, Poland.
Jarostaw Chilimoniuk, Michal Burdukiewicz, Piotr Sobczyk, Stefan Rodiger, Malgorzata
Kotulska and Pawel Mackiewicz.

17.05-18.05.2019

e AmyloGram: the R package and a Shiny server for amyloid prediction.
Why R? 2019, Warszawa, Poland.
Jaroslaw Chilimoniuk, Michal Burdukiewicz, Piotr Sobczyk, Stefan Rédiger, Malgorzata
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Kotulska and Pawel Mackiewicz.

26.09-29.09.2019

e PhyMet2: a database and toolkit for phylogenetic and metabolic analyses of methanogens.
PTBI: Polish Bioinformatics Society, 2018, Wroctaw, Poland.
Jarostaw Chilimoniuk, Michal Burdukiewicz, Przemystaw Gagat, Stawomir Jabtonski,
Michat Gaworski, Pawet Mackiewicz, Marcin Lukaszewicz.

05.09-07.09.2018

12.5 Conference posters

e AmpGram — a novel tool for prediction of antimicrobial peptides.
6th Joint Conference of the DGHM VAAM, 2020, Leipzig, Germany.
J. Chilimoniuk, M. Burdukiewicz, K. Sidorczuk, F. Pietluch, D. Rafacz, S. Rédiger, P.
Gagat. 08.03-11.03.2020

e AmyloGram: prediction of amyloid sequences in R.
EuPA: XIII. Annual Congress of the European Proteomics Association: From Genes via
Proteins and their Interactions to Functions, 2019, Potsdam, Germany.
Jarostaw Chilimoniuk, Michal Burdukiewicz, Piotr Sobczyk, Stefan Rodiger, Malgorzata
Kotulska and Pawel Mackiewicz.

24.03-28.03.2019

e Co-evolution of curli components CsgA and CsgB.
VAAM: Jahrestagung 2019 der Vereinigung fiir Allgemeine und Angewandte Mikrobiolo-
gie, 2019, Mainz, Germany.
Jaroslaw Chilimoniuk, Michat Burdukiewicz, Pawel Mackiewicz.

17.03-20.03.2019

e AmyloGram: prediction of amyloid sequences in R.
PL in ML: Polish View on Machine Learning, 2018, Warsaw, Poland.
Jarostaw Chilimoniuk, Michal Burdukiewicz, Piotr Sobczyk, Stefan Rédiger, Anna Duda-
Madej, Marlena Gasior-Glogowska, Malgorzata Kotulska and Pawel Mackiewicz.
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14.12-17.12.2018

e CsgA and CsgC - evolutionary interplay in curli biogenesis.
8th ASM Conference on Biofilms, 2018, Washington, DC, USA.
Jaroslaw Chilimoniuk, Michat Burdukiewicz, Pawel Mackiewicz.

07.10-11.10.2018

e PhyMet2: database and algorithm predicting culturing conditions of methanogens.
IBID: International Biotech Innovation Days, 2018, Senftenberg, Germany.
Jarostaw Chilimoniuk, Michal Burdukiewicz, Przemystaw Gagat, Stawomir Jabtonski,
Michat Gaworski, Pawel Mackiewicz, Marcin Lukaszewicz.

23.05-25.05.2018

e PhyMet2: complex database containing records on methanogens with unique feature
(MethanoGram) allowing prediction of culture conditions based on 16S rRNA.
VAAM: Jahrestagung 2018 der Vereinigung fiir Allgemeine und Angewandte Mikrobiolo-
gie, 2018, Wolfsburg, Germany.
Michat Burdukiewicz, Przemystaw Gagat, Stawomir Jabtloriski, Jarostaw Chilimoniuk,
Michat Gaworski, Pawet Mackiewicz, Marcin Lukaszewicz.

15.04-18.04.2018



