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1 Introduction

Motivation

With more than 1 million articles published every year in the biomedical
and life sciences domain [1], manual literature review, especially within the
biomedical domain, became increasingly difficult for individual researchers or
small teams. A 2023 analysis found that the total number of articles indexed
in Scopus and Web of Science in 2022 was approximately 47% higher than in
2016 [2]. Curating datasets requires specialist knowledge, a lot of work and
time, especially with such a growth of publications. A simple search provides
us with many articles to review. As a result, researchers can overlook impor-
tant publications or spend too much time analyzing materials of little value to

their work.

For this reason, it is worth considering tools that would help relieve the burden
on researchers and indicate publications that we might be potentially interested

in based on previously labeled data.

Objective

Text classification in the biomedical domain creates particular challenges:
the terminology is highly specialized and varied, the datasets are often imbal-
anced. The aim of this work is to compare classical machine learning methods
[3] with transformer [4] based approaches on the binary biomedical text clas-

sification task.

This work focuses on automatizing the data curation process, which at the
moment requires manual assessment and is time-consuming. We implement a
binary classifier that leverages an article’s abstract, title and journal name to
predict whether the article is relevant for us. In addition, we develop a fetcher
that retrieves these data from the Entrez API using the PubMed ID (PMID) of
the article. The approach is mainly evaluated on a manually curated dataset
that contains experimental research on the interaction between amyloids and

antibodies.

The methods used in this work are based on classical machine learning and



deep learning methods. In the case of classical methods, we deal with logistic
regression, random forest and they will serve as a baseline. In terms of deep
learning, we investigate BioMed BERT [5], SapBERT [6], BioMed RoBERTa
[7], which represent specialized variants of the BERT [§] architecture adapted

to biomedical domain.

An overview of the complete data processing and model training pipeline is

shown in Figure [T}
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Figure 1: Diagram illustrating data integration, language model training and
evaluation.

The diagram illustrates how the data are processed and the whole training
pipeline procedure. The elements in oval shapes represent external inputs

(raw data, pre-trained models), while the rest of the pipeline is designed and

4



implemented as a part of this thesis work.

Structure and prerequisites

The thesis is divided into 6 sections. In section 1 we present motivations
and objective of the work. Section 2 contains theoretical aspects of the used
methods, the goal is to provide the background necessary to understand the ex-
periments in later sections. We start with traditional approaches to represent
the text, then we move to the transformer architecture and BERT. Section 3
describes the dataset used in this work. Section 4 explains the experiment
procedures: data splitting, evaluation, hyperparameters. Section 5 describes
alternative methods that were tried in parallel with the main approach. It
presents the attempts to obtain missing reference data, construction of cita-
tion graph and experiments with reference model based on graph convolutional
neural networks. Section 6 contains the experimental results for classical meth-
ods and transformer models (BioMed RoBERTa, SapBERT, BioMed BERT),
analysis of hyperparameter influence, comparison of results, practical applica-

tion and summary.

We assume that the reader has completed a basic course in machine learning.
In particular, the reader should understand: different data splitting strategies,
dividing into train/validation/test set, cross-validation, stratified sampling,
concept of generalization, machine learning algorithms such as logistic regres-
sion, random forest, basic evaluation metrics (accuracy, precision, recall, F1-
score). In addition, the reader should be familiar with deep learning, at least
multi-layer perceptron, activation functions, loss functions, stochastic gradient

descent and its variants, the role of the learning rate and weight decay.

2 Methods of text classification

2.1 Classical methods

Text data differ from numerical or image and need specialized NLP tech-
niques for proper preprocessing. Traditional models typically rely on manually
crafted features to represent the data, which are then fed into classical machine

learning algorithms for classification. Therefore, the performance of these al-



gorithms heavily relies on the feature engineering.

BOW

One of the most common approaches to represent text is the Bag-of-Words
(BOW) model [9]. In BOW, each document is represented by a set of words
(tokens), ignoring the order. For the corpus of N documents and dictionary C,
the matrix X € RV*ICl called Document-Term Matrix, is constructed. Each
row in the matrix represents the document and columns correspond to words,

each entry indicates the count of a term in a document.

TF-IDF

Another widely used representation is Term Frequency-Inverse Document
Frequency [10]. This method is a weighted modification of BOW. TF-IDF is
a measure of the significance of the term ¢ in a document d in the context of
whole corpus D. Mathematically it is defined as a product of two factors, TF
and IDF.

TF-IDF(t,d, D) = TF(t,d) - IDF(t, D) (1)

TF(t,d) is the count of a term ¢ in a document d and

Dl

IDF(t, D) =1
(t. D) Og1+|{deD:tEal}|’

which is the log ratio of the total number of documents in corpus D to the
number of documents containing term ¢. The rarer a word is in the corpus,
the higher its IDF value. Frequent words like "a", "the", "and" get IDF close
to 0. There are also different variants of TF and IDF.

BOW and TF-IDF can be extended with the usage of n-grams [11], which

creates features as a sequence of words rather than one word.



2.2 Transformer

This section is based on the concepts presented in the paper “Attention Is
All You Need” [4].

Moving on from classical methods, lately deep learning approaches, such as
recurrent neural networks (RNNs) and transformers, have become popular for
text classification. Compared to the sequence models (RNN, LSTM) that
were consuming input word-by-word sequentially and had problems with long-
distance dependencies, transformers allow parallel processing of input sequence,
with the key aspect of the architecture being the usage of the attention mech-
anism and the multi-head self-attention that runs several attention layers in

parallel, providing useful and rich representations of words.

The transformer architecture consists of two parts: encoder and decoder. The
encoder is here for processing the input and creating continuous representa-
tions which then are fed into the decoder that outputs a sequence of final
symbols autoregressively one element at a time. Both parts depend on the us-
age of self-attention, which allows the model to capture dependencies between

words.
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Figure 2: Transformer model architecture [12].
Tokenization

First of all, if we want to work with a transformer architecture, our text
must be processed in some way. In the case of classical algorithms, we used
bag-of-words text representations, while for neural networks, we need to con-

vert the text into vector embeddings.

The text will first be tokenized into a sequence of words or sub-words from a
fixed dictionary C. These tokens will be assigned their vector representation
in a latent space. More precisely, given a sequence of tokens {wy,ws, ..., w,}.

Each token w; is mapped to an embedding vector
x; = Embed(w;) € RY,

which can be written as the application of the embedding matrix £ € R¥*IC|
to the one-hot vector
x; = E(one-hot(w;)).



The sequence of the obtained embeddings is then collected into a matrix

X = [z1,29,...,2,])" € R4, (2)

Positional Encoding
To take into account the position of the token in the sequence, we add a
position vector p; € R? to the embedding of ;. In the original paper [4], they

used sine-cosine patterns

. 1
Di2k = SIn <W) )

A B )
p’l72k2+1 = COs 100002k/d )

where k = 0,1,...,d/2—1 and p; ; denotes the j-th coordinate of the position

vector p;. The matrix of embeddings augmented this way is then

7Z =X + P, where P = [p1,p2,...,pn)". (3)

2.2.1 Encoder

An encoder comprises N identical layers that are built from two specific

sub-layers:

1. Multi-Head Attention (MHA),

2. Feed Forward Neural Network (FFN).

For each of these sub-layers, we add at the end residual connections and
layer normalization. That is, the output of each sub-layer is LayerNorm(z +

Sublayer(z)), where Sublayer(x) is one of the two previously mentioned.

Scaled dot-product attention

The attention mechanism enables the model to create better word repre-
sentations based on other words in the input sequence. Each word is repre-
sented according to its context by learning which other words are most relevant
to it.



For each token we compute three vectors: a query, a key and a value. We
obtain these by multiplying augmented input by W WX WV € R4*dmode
which are learned matrices during the training. These vectors typically has

the same dimension d,,,qe1, but they can also be projected to smaller dimen-

sions d;, and d,. We define:

Q=2ZW¢
K =2WE,
V=zw".

To determine how much each word should attend to every other word, we mea-
sure the compatibility between queries and keys using the dot product (QK7T).
The resulting scores are normalized with a softmax function. The new word
representations are calculated as a weighted sum of values, using the softmax
weights. In other words, the model asks (query) and looks at every word in the
sequence. The words that are connected to the query are given more weight

for the final representation.

The whole procedure can be performed with simple matrix multiplications

and softmax.

Attention(Q, K, V) ft (QKT)V (4)
ention(Q), K, V) = softmax i
Vi

with the addition of a scaling factor ﬁ to prevent the gradients from being

too small.

The softmax is applied row-wise

em o, _efin
T11 - Tin DO el 2 el
softmax e = : :
Tnl - Tpn % s %
2joie ™ 2o e

Multi-head Attention
Instead of using just one attention mechanism, the model uses multi-

ple heads (h heads). Each head ¢ has its own learned linear projections

I/ViQ, WE WY for the queries, keys and values respectively. The whole Multi-
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head Attention can be described as:
MultiHead(Q, K, V) = Concat(head,, . .., head,) W (5)

where head; = Attention(QVViQ, KWE VWYY, i=1,... h.

The projections are parameter matrices W2 € Rmoderxdi 7K ¢ Rédmoder <
WV e RdmodeIde and WO G thdemodel‘

(2
In the original paper [4], h = 8, di, = d, = dinodel/h = 64.

FFN

Feed Forward Neural Network is just two linear transformations with

ReLU activation in between.
FFN(X) = ReLU(XW; +1b] ) Wy + 1b;, (6)

where W, € Rémoderxdit p, c R W, € R X dmodel py € Rfmodel ] € R™,

Encoder summary

To sum up, the encoder maps a sequence of token embeddings into contex-
tualized representations using a stack of identical layers. The process consists

of the following steps:

1. Input:

70 — [Embed(w;) + p1, ..., Embed(w,) —i—pn]T € R™*model

2. Stack of N Encoder Layers:
Fori=1,2,..., N:

yARESS LayerNorm(Z(i_l) + MHA(Z(i_l))),
yARES LayerNorm(Z(i) + FFN(Z(i))).

3. Output: ZN) € R"*%moder,

11



2.2.2 Decoder

Decoder, similarly to the encoder is also built from N identical layers.
Each of them has 3 sub-layers: Masked Multi-Head Attention, encoder-decoder
Multi-Head Attention, FFN. We already know MHA, the above have some
minor tweaks. Like before, after every sub-layer we add residual connections

and layer normalization.

Masked MHA

The first sublayer of a decoder layer is Masked MHA. The decoder gen-
erates output tokens autoregressively, that is why we must mask the future.
Specifically, generating the i-th token the model cannot attend to tokens from
subsequent positions j > ¢. It means that we can only generate new tokens

based on the previous known outputs.

T

K
MaskedAttention(Q, K, V, M) = softmax (Q
V.

M is masking matrix with entries 0 for accessible positions and —oo for illegal

+ M) V. (7)

future positions. This allows to give zero attention weights to the future out-

puts.

0, J <

—00, J > 1.

Encoder-decoder MHA

In encoder-decoder MHA the queries come from previous Masked MHA
sub-layer and the keys and values come from the output of the encoder. The
keys and values represent the context of the whole original input sentence.
The decoder generates a query from the output and tries to find words that

influence the question the most, based on that the output is generated.

Probability outputs

After passing the output through all N decoder layers, we obtain con-

textualized representation for each token in the output sequence. To generate

12



next tokens, we apply a linear layer that maps it to the vocabulary dimension.
Then we use softmax to get the probability distribution over all possible words.
That way a single token is generated, it is appended to the existing output

and next token is generated from the completed sequence.

2.3 BERT

This section is based on the concepts presented in the paper “BERT: Pre-

training of Deep Bidirectional Transformers for Language Understanding” [§].

BERT (Bidirectional Encoder Representations from Transformers) model, as
the name suggests, uses only the encoder part from transformer architecture.
It consists of N encoding layers. Unlike previously in the transformer’s de-
coder we had unidirectional context (masking) when generating tokens, BERT
is trained in a bidirectional way, taking context from left and right of each
token. It is important to note that BERT does not have a decoder. Dur-
ing training, it uses prediction head on top of encoding layers, tailored to the

specific task.

Pre-training

The training of BERT takes place in two steps, one of them is pre-training,
where the model is trained on two unsupervised tasks. The objective of the
pre-training is to familiarize the model with the language itself from large text
corpora like English Wikipedia (2500M words).

Task 1 — Masked Language Modelling (MLM)

In order to take advantage of bidirectionality, the training is constructed
by masking at random some percentage of the input sentence and predicting
the missing words. Masked words are replaced by special token [MASK] but
not always. Since the special token [MASK] does not appear in the second
learning task and fine-tuning, the masking procedure can be explained by the

following example.

e 80% of the time: Replace the word with the [MASK] token.
I love green apples — I love green [MASK].

13



e 10% of the time: Replace the word with a random word.

I love green apples — I love green dog.

e 10% of the time: Keep the word unchanged.

I love green apples — I love green apples.

Task 2 — Next Sentence Prediction (NSP)

The model receives two sentences: A, B and needs to decide whether the
sentence B is the actual next sentence after A in the original text. The training
is constructed so that 50% of time B is the next sentence and 50% of time B
is a random sentence from the corpus. Through training, the model learns the

relationship between sentences.

Fine-tuning

With general knowledge of the language, the model can be adapted to a
specific task through a process called fine-tuning. The model can be trained

on various downstream tasks:

o Text classification — sentiment analysis, spam detection.
e Token classification — named entity recognition.
e Question answering — extracting the answer span from a given context.

e Semantic similarity — comparing sentence embeddings for retrieval or

clustering.

In each of those tasks, we use the same model with pre-trained parameters and

switch the prediction head suited to the specific task.

3 Datasets acquisition and preparation

AmylogGraphAB dataset

AmyloGraphAB is an ongoing database of studies reporting the effects of
antibodies on amyloid formation. Amyloids are fibrous protein aggregates in-

volved in both biological functions and disease. Their §-sheet structure allows

14



them to assemble into long unbranched fibrils. Accumulation of these fibrils
in tissues and organs may impair normal function, leading to diseases known

as amyloidosis.

The database is being curated under the guidance of Valentin Iglesias, Mariia
Solovianova and Ronja Titel from the Medical University of Biatystok, with
the goal of collecting and systematizing data on the interaction between amy-

loids and antibodies.

The database was created by initially searching the PubMed database for ar-

ticles using an appropriate query. The following search strings were used:

e "amyloid"[Title/Abstract] AND "antibodx"[Title/Abstract],

e "amyloid" [Title/Abstract] AND "nanobodx"[Title/Abstract].

Among the articles found, each was manually assessed and classified as useful

or irrelevant, based on the following criteria.
Inclusion criteria:

1. Studies that report the effect of antibodies on amyloid formation.

2. Experimental data on amyloid fibrillation (AFM, PET, ThT, TEM)[]
Exclusion criteria:

1. Pre-prints.
2. Duplicates (already included papers).
3. Non-English papers.

4. Reviews, commentaries, perspectives, editorials.

At the initial processing stage, the input data were in the form of PMID
(PubMed ID) identifiers together with the classification decision (Useful or
Rejected). For each paper, we fetched from the Entrez database:

!Detailed descriptions of these methods can be found under Ezperimental methods for
studying amyloid cross-interactions [13]
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title,

abstract,

journal,

references.

30% of the references was not available through the Entrez database, the miss-

ing references were retrieved from OpenAlex database.

During the experiment, we had 1853 labeled articles. 150 (8%) of them were
labeled as positive (useful). This is a relatively small dataset, which could lead
to overfitting to the training set and poor generalization to new data, as the
model sees a small number of positive examples. The limited sample size also

results in high variance across different data splits and model initializations.

4 Methodology

Every evaluated neural network based model was registered in Weights &
Biases (wandb) project, where we can access various training artifacts such as

history of training loss, score metrics, hyperparameters.

4.1 Data splitting and validation

For model evaluation, cross-validation with a hold-out test set was used.
Hold-out test set is a part of data that the model does not see during the train-
ing. It serves as a final unbiased estimator of the model, like in a typical real-
world scenario. The data were split into 85% train set and 15% hold-out test
set. On the train data 5-fold cross-validation was performed. Cross-validation
is not a typical way to train neural networks, but with a high variance dataset
with only 8% positive articles among 1853 observations, a more stable method
was necessary. Every splitting method used a stratified version to maintain
the same class distribution. In each of the 5 splits, the data were divided into
training and validation sets. The model was also evaluated on the hold-out test
set. As a result, we obtained 5 validation results and 5 test results, providing

a more reliable estimate of the model’s performance.
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4.2 Model training process
Models

We assume it is better to use models that were pre-trained on medical
domain texts. These models usually give a better starting point than BERTSs

pre-trained on Wikipedia. The ones that are considered in this work:

1. microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract: This model

was pre-trained from scratch on abstracts from PubMed [5].

2. cambridgeltl/SapBERT-from-PubMedBERT-fulltext: The SapBERT
model was developed by further pre-training BioMed BERT to recognize
synonyms of the same entity using UMLS (Unified Medical Language

System), a database of medical entities and their synonyms [6].

3. allenai/biomed_roberta_base: This model is based on RoBERTa-base
[14], a modification of BERT with more robust pre-training precedure on

more data. The model was adapted to the biomedical domain [7], pre-
trained on The Semantic Scholar Open Research Corpus (S20RC) [15].

Learning rate

With 110M parameters in a BERT},as [4] a learning rate has to be carefully
chosen not to disrupt pre-trained model. Typically used learning rates for fine-
tuning are values from 1e-5 to 5e-5. In this work we will test: 5e-6, le-5,
2e-5, 3e-b.

Max length

This hyperparameter defines the length of the input sequence to the model
after tokenization. In BERT, the context window is limited to 512 tokens. For
every longer sequence, the text is truncated. For shorter sequences, the input

is padded, missing tokens are [PAD] tokens.
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In our work the abstracts are on average 230 words long, the longest hav-
ing 796 words. Sometimes the whole word does not equal to 1 token, the word
can be split into 2 tokens, we can accept that on average 1 word ~ % tokens.
Based on that, we will use mostly max_length=350 and test max_length=512

to capture most of the text.

Unfrozen layers

This setting controls the number of layers that are trainable during the
fine-tuning. The BERT consists of 12 encoder layers. During the fine-tuning,
all of the encoder layers are frozen, then a chosen number of the last layers
are unfrozen. For small values, the parameters from the original model are
mostly preserved and we train the classifier head. With Unfreeze_last_k=12

all parameters are updated.

5 Other approaches

This section describes alternative methods that were tried in parallel with
the main approach. It presents the attempts to obtain missing reference data,
construction of citation graph and experiments with reference model based on

graph convolutional neural networks [16].

Initial problem

In the data fetched from Entrez API about 30% of the observations were
missing references (PubMed does not provide references). Because GCN uses

references to build the graph, we tried to get the missing data.
Alternative sources:

e Scopus — At first, we noticed that the missing data were available in
the Scopus database. However, the Scopus API does not allow fetching

references, so this source of information was rejected.

e OpenAlex — We used OpenAlex as an alternative and we obtained most

of the missing data. The challenge with OpenAlex was that it was using

18



OpenAlex ID in references, so for all of the references we needed to once
again use OpenAlex API to convert OpenAlex IDs into PMIDs. After
this step, around 3% of the records lacked references. Those articles were

not included in the later experiment.

Citation graph

Since the number of positively assessed articles was so small, we assumed
that positive papers were more likely to cite other positives. We decided to
create a citation graph that includes only documents referencing at least two

articles that were previously labeled as positive.

19



(b) Zoomed citation graph with interactive data.

Figure 3: Citation graph and zoomed section.

There are green nodes (positively labeled articles), red nodes (negatives) and
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gray nodes (unlabeled articles that are cited by labeled nodes). The size of
a node depends on a number of positive references, the more an article has
positively labeled articles in references, the larger the node. The zoomed part
in Figure [3b| displays information that appears after clicking on a node. For a

node we get information about: PMID, label, degree, citation data.

5.1 Reference model

We tried using Graph Convolutional Network (GCN) [16] as an extension
of the BERT model. GCN takes the input in the form of a graph, where
nodes are articles (specifically: [CLS] embedding of the abstract reduced to
100 dimensions for memory efficiency) and edges are citation relations (citing
— cited). During forward pass, each GCN layer updates every node by first
aggregating the information from its neighbors and then applying a linear
transformation with activation function. This setup enables the model to
capture not only textual information, but add reference information from the

neighbors.

While testing on a 60/20/20 train/validation/test split we did not see any
improvements. The results on a validation set were similar to the BERT model

but performance on the test set dropped.

6 Results

In the experiment we monitored standard evaluation metrics: accuracy,
precision, recall, Fl-score. The selection of the best model was based on the
highest mean F1-score achieved on the validation dataset, however we also took
into account the results of recall, since for researchers the goal was to identify
as many relevant articles (true positives). Consequently, among models with

comparable Fl-score, those with higher recall were preferred.

6.1 Classical methods

For traditional machine learning methods, alongside different text repre-
sentation, we tried various preprocessing techniques. We tried no preprocess-

ing, processing that involved converting text to lowercase, removing special
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characters, digits, URLSs, emails and extra whitespaces. Additionally, we ap-

plied lemmatization, which reduces words to their base forms.

Table 1: Classical models results.

Model Val F1 | Std | Test F1

Logistic Regression

0.49 | 0.06 0.45
preprocess + lemmatize, TF-IDF

Logistic Regression
_ 0.48 0.05 0.43
no preprocessing, TF-IDF

Logistic Regression
0.48 0.04 0.42
preprocess, TF-IDF

Logistic Regression
] 0.44 0.08 0.38
preprocess + lemmatize, DTM

Random Forest
0.43 0.02 0.41
preprocess, TF-IDF

Random Forest
0.41 0.05 0.49

preprocess + lemmatize, TF-IDF

We found that the best results were achieved by logistic regression with TF-IDF
representation of preprocessed, lemmatized text. Random Forest did not meet
the expectations, but somehow performed the best on the test set. Logistic
regression is interpretable directly through its coefficients; a positive coefficient
increases the probability of the positive class. During training, we found that

there are a few words strongly associated with a positive class.

Positive words:

e scFv (single-chain variable fragment),
e mAb (monoclonal antibody),
e TTR (transthyretin) — connected to the TTR amyloidosis,

e hiAPP (human islet amyloid polypeptide).

Also words like af, aggregate and antibody had high positive coefficient.

This finding gave a quick insight into which words we should pay attention to.
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6.2 Language models
BioMed RoBERTa

Presented results come from fine-tuning the allenai/biomed_roberta_base
model. The reported models are the best performing among different hyperpa-
rameter configurations. All models were trained with max_length = 350, up-
dating the last six layers. For models with title added to abstract max_length
= 370 was set.

Table 2: BioMed RoBERTa results.

Model Val F1 | Std | Test F1 | Std

Ir: 2e-5, abstract 0.50 0.05 0.56 0.03

Ir: 3e-5, abstract 0.50 0.05 0.56 0.05

Ir: 2e-5, title+journal4-abstract 0.45 0.04 0.52 0.03

Using only abstracts, the best hyperparameter configuration with a learning
rate of 2e-5 achieved a mean F1-score of 0.50 on the validation sets (standard
deviation = 0.05) and an Fl-score of 0.56 on the test set (standard deviation =
0.03). Usually we should be happy when the results on the test set are better
than on the validation set. It appears that other hyperparameter choices did
not improve the performance and adding additional information such as title
and journal name worsened the performance.

BioMed RoBERTa was originally trained on 2.68M biomedical full-text papers
from S20RC [7, [15]. These texts differ from PubMed abstracts, which are
present in the fine-tuning, which might be the reason why this model has

lower performance than the others that are pre-trained on PubMed texts.

SapBERT

Table 3: SapBERT results.

Model Val F1 | Std | Test F1 | Std

ceq_lon, 350, abotra 055 006 045 | 003
Seq_len:lrg 122%_fi’tilerflljriiiialliabstract 0.54 |0.04| 0.55 |0.05
soq_lo, 350, abstract 051 | 007 | 048 | 0.06
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The SapBERT model was developed by further pre-training BioMed BERT,
which was pre-trained on PubMed abstracts. That data match the data in our
experiment and we immediately can see much higher Fl-scores on validation
sets. The best performing model achieves mean 0.55 F1l-score on validation
set and 0.45 on the test set. The best results are obtained with learning rate
3e-5 or 2e-5. The second model operates on 512 token length input and has
added title to the abstract, we can observe that it performs much better on
the test set compared to other models. However, this might be random, since

adding title information previously did not improve the score.

BioMed BERT

Table 4: BioMed BERT results.

Model Val F1 | Std | Test F1 | Std

Ir: 3e-5, unfreeze: 12, seq_len: 370,
) ) _ 0.59 | 0.04 0.61 0.03
weight decay: 0.1, title+journal{-abstract

Ir: 3e-5, unfreeze: 12
0.58 0.07 0.56 0.05
seq_len: 350, abstract

Ir: 3e-5, unfreeze: 6

0.57 | 0.07 0.55 0.07

seq_len: 350, abstract

Using title, journal and abstract as input, the best hyperparameter con-
figuration with a learning rate of 3e-5 and all 12 layers unfrozen achieved a
mean F1-score of 0.59 on the validation sets (standard deviation = 0.04) and
an Fl-score of 0.61 on the test set (standard deviation = 0.03). Greater per-
formance on the test set compared to the validation set is a positive indication

of effective generalization.
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Figure 4: Validation F1-score results for different learning rates and unfrozen
layers configuration for neural network models.

During the experiment, we mainly investigated the influence of learning
rate, the number of unfrozen layers and the length of the input sequence.
Increasing the max_length parameter from 350 to 512 did not show any im-
provements on validation data, but 2 out of 3 showed models achieved better
results on the test set. Influence of learning rate with a number of layers signif-
icantly impacted performance of the models. As shown in [4] generally higher
learning rates combined with greater number of trainable layers led to better
results. Intuitively, we can assume that the lower layers of the encoder are
responsible for word representations and dependencies between words, while
higher are capturing the overall context of the sentence. If we unfreeze only
higher layers, we are not fully fitting to the specific task. With more layers to

train, we are adapting model to the domain.
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Figure 5: Train loss with Q1-Q3 Shading

We can also inspect the training history of each run across the three models.
From the analysis, it is evident that BioMed RoBERTa is the worst, showing
slower improvement during training and lower final scores compared to other

models.

6.3 Comparison

Table 5
Model Val Precision | Val Recall | Val F1 | Test F1
BioMed BERT 0.54 0.65 0.59 0.61
SapBERT 0.51 0.60 0.54 0.55
BioMed RoBERTa 0.41 0.68 0.50 0.56
Logistic Regression 0.41 0.61 0.49 0.45
Random Forest 0.42 0.43 0.43 0.41

We evaluated classical machine learning methods (logistic regression and
random forest) with different text representations, as well as several language
models (BioMed BERT, SapBERT, BioMed RoBERTa). Logistic regression

performed reasonably well, given the small dataset. This model is a good
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baseline and can be quickly implemented and deployed into production. It
also offers high interpretability. One concern with classical methods is that
they achieved poor performance on a test set, indicating limited generalization

to unseen data.

The best perfmorming model turned out to be a BioMed BERT pre-trained
on PubMed abstracts, achieving on a validation set an Fl-score of 0.59 and
0.61 on a test set. All models have higher recall than precision, which aligns

with the goal of finding as many positive examples as possible.

6.4 Other dataset results

The same experiment can be conducted on another dataset. One of them
focuses on prediction tools for peptide activity [I7]. The prepared dataset
contains 256 labeled articles. 58 (23%) of them are labeled as positive. Records
were assessed as positive, when the paper presented new tool or model for

prediction of the peptide activity.

Table 6
Model Val Precision | Val Recall | Val F1 | Test F1
BioMed BERT 0.80 0.80 0.80 0.65
SapBERT 0.82 0.90 0.85 0.65
BioMed RoBERTa 0.75 0.8 0.75 0.70
Logistic Regression 0.66 0.71 0.69 0.63

This data immediately turns out to be much easier to classify as we see much
better results. Logistic regression performed comparably to the language mod-
els on a test set. Looking at the validation set, language models outperformed
logistic regression. The best results on the validation set were achieved by
SapBERT, however on the test set the highest Fl-score was obtained with
BioMed RoBERTa. The difference between validation and test results means
that the models overfitted to the validation data. It is not surprising, since

the dataset contains only 256 records.
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6.5 Practical application

Before conducting the experiment, with smaller dataset consisting of 1567
negatives and 117 positives (only 7% of positives), we trained a SapBERT
model to help identifying new positives. The model achieved precision of 0.38,
recall of 0.74 and F1l-score of 0.5 on a validation set. We then generated pre-
dictions on 1477 unlabeled records and identified 201 positives. After manual
assessment, 50 of them were confirmed as true positives, resulting in a real-
world test precision of 0.25. Previously, the ratio of positives to negatives was

approximately 1:13. Thanks to SapBERT, we improved this ratio to 1:3.

With new data (1747 negatives, 167 positives), we fine-tuned BioMed BERT
that on the validation set achieved an F1-score of 0.67. We generated predic-
tions on the same unlabeled dataset (without 201 identified articles by Sap-
BERT) and this time we got 12 positives. Six of them turned out to be true
positives, resulting in a ratio 1:1. We should keep in mind that the previous
model was trained with high recall to detect as many positives, so the new
model might have had an easier job. The model also predicted new positives

that the previous model did not.

6.6 Summary

By prioritizing potentially relevant publications, the approach can reduce
manual curation effort and accelerate the discovery of meaningful research
papers. Manual literature review and searching for works that are of interest
to us can be greatly facilitated by using smart classification tools. We noticed
that even a simple classifier based on logistic regression can speed up manual
data curation. Using modern classifiers based on language models, we are
able to speed up the finding of positives by 350%. The tool that has been
implemented can be used as a filtering device or as a better search engine.
We only need some data at the beginning to train the model. The proposed
procedure for searching new relevant works would be to use the language model

from the beginning and retrain it as the labeled data grow.
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